MS4 General Permit Town of Wallingford 2021 Annual Report Permit Number GSM 00050 January 1, 2021 – December 31, 2021 Primary MS4 Contact: Robert Baltramaitis, Director of Public Works, wallingfordtownengineer@gmail.com This report documents the Town of Wallingford's efforts to comply with the conditions of the MS4 General Permit to the maximum extent practicable (MEP) from January 1, 2021 to December 31, 2021. # Part I: Summary of Minimum Control Measure Activities # 1. Public Education and Outreach (Section 6 (a)(1) / page 19) | ВМР | Activities in current reporting period | Sources Used (if applicable) | Method of
Distribution | Audience (and number of people reached) | Measurable Goal | Department /
Person
Responsible | Additional details | |---|--|---|---------------------------|---|---|--|--------------------| | 1-1 Implement public education and outreach | The Town utilizes its website to post links related to the Stormwater Management Plan, as well as other links relating to polluted runoff, rain barrel utilization, and vegetated ripairian buffers. | Stormwater and
You:
https://www.walli
ngford.ct.us/gover
nment/departmen
ts/public-
works/stormwater
-and-you/ | Website | ~1,000 | Provide public access to stormwater literature. | Department of
Public Works,
Engineering,
Wetlands,
Planning & Zoning | | | 1-2 Address education/ outreach for pollutants of concern | The Town has posted a brochure on the Stormwater management page relating to pet waste management. This brochure details | Pet Care Fact Sheet: https://www.walli ngford.ct.us/Custo mer- Content/www/CM S/files/EngPetCare | Website | ~1,000 | Educate and provide pet waste management to the public. | Water Pollution
Control Authority | | | | the importance of cleaning up after a pet as well as waterfowl pollutants. | FactSheet121120.p
df | | | | | | |--|---|---|----------|--------|--|----------------------------|--| | Additional BMP:
1-3 Hazardous
Waste Collection | The Town of Wallingford provides hazardous waste collection in association with the Regional Water Authority in New Haven. Wallingford residents can dispose of their hazardous wastes at this location Saturday Mornings from mid-May to the end of October. | Waste Disposal Center for Wallingford Residents: https://www.walli ngford.ct.us/reside nts/recycling- composting-and- waste- disposal/waste- disposal-center/ | Website. | ~1,000 | Educate and provide hazardous waste collections. | Town Planning
Committee | | # 1.2 Describe any Public Education and Outreach activities planned for the next year, if applicable. - 1. Continue with Hazardous Wast collection days. - 2. The Town plans to set up a display at the Town Hall, near the Engineering Department. Stormwater information is currently posted in the Engineering Department. # 2. Public Involvement/Participation (Section 6(a)(2) / page 21) | ВМР | Status
(Complete,
Ongoing, In
Progress,
or Not
started) | Activities in current reporting period | Measurable Goal | Department /
Person
Responsible | Date completed or projected completion date (include the start date for anything that is 'in progress') | Location Posted | Additional
details | |--|--|---|--|---|---|--|-----------------------| | 2-1 Final Stormwater
Management Plan publicly
available | Completed | The Stormwater Management Plan is currently located on the Town's "Stormwater and You" page. | Provide notice and
access to the
Stormwater
Management Plan | Engineering | April 1, 2017 | Stormwater Management Plan: https://www.wa Ilingford.ct.us/cu stomer- content/www/C MS/files/Stormw aterMgmtPlanFi nal33017.pdf | | | 2-2 Comply with public notice requirements for Annual Reports (annually by 2/15) | Completed
Annually | The public notice is posted via the Town website on an annual basis for public review and comments. | Provide notice and
access to the Annual
Report | Law Department, Engineering, and Department of Public Works | Annually-by Feb.
15 th | Annual Report: https://www.wa llingford.ct.us/q overnment/depa rtments/public- works/stormwat er-and-you/ | | | Additional BMP: 2-3 Hazardous Waste Collection | Completed
Annually | The Town of Wallingford provides hazardous waste collection in association with the Regional Water Authority in New Haven. Wallingford residents can dispose of their hazardous wastes at this location Saturday Mornings from mid-May to the end of October. | Provide Hazardous
Waste Collections or
access to collections | Regional Water
Authority | Annually-mid-May
though the end of
October | Waste Disposal Center for Wallingford Residents: https://www.wa Illingford.ct.us/re sidents/recycling -composting- and-waste- disposal/waste- disposal-center/ | | | Additional BMP:
2-4 Composting | Completed
Annually | The Town of
Wallingford
provides disposal for | Provide disposal for organic debris. | Compost Center | Yearly | Compost Center:
https://www.wa
llingford.ct.us/re | | | leaves and other | sidents/recycling | |--------------------|------------------------| | organic debris for | -composting- | | Town residents at | <u>and-waste-</u> | | the local compost | <u>disposal/compos</u> | | center. | <u>t-center-for-</u> | | | residents/ | # 2.2 Describe any Public Involvement/Participation activities planned for the next year, if applicable. - 1. The Town of Wallingford anticipates a booth containing stormwater information at "Celebrate Wallingford". - 2. Brochures to be distributed on the Stormwater Retrofit Progam. *It should be noted that all future activities are COVID-dependent, and may result in less participation or cancellation. # **3. Illicit Discharge Detection and Elimination** (Section 6(a)(3) and Appendix B / page 22) | ВМР | Status
(Complete, Ongoing,
In Progress, or Not
started) | Activities in current reporting period | Measurable Goal | Department / Person
Responsible | Date completed or projected completion date (include the start date for anything that is 'in progress') | Additional details | |---|--|---|---|---|---|---| | 3-1 Develop written IDDE program (Due 7/1/19) | Completed | The Town finalized an IDDE progam in September of 2019. | Develop written plan
of IDDE program | Law Departemnt, Department of Public Works, Engineering | September 2019 | | | 3-2 Develop list and maps of all MS4 stormwater outfalls in priority areas (Due 7/1/20) | Completed | The Town developed a list and maps of all MS4 stormwater outfalls in priority areas through CAD technology. With assistance from Atlas, the Town has since mapped all MS4 stormwater outfalls through a GIS technology, and continues a QA/QC process of reviewing the GIS/CAD systems, and editing as necessary. | Map all outfalls. | | | | | 3-3 Implement citizen reporting program (Ongoing) | Completed | The Town has implemented an illicit discharge reporting form, which is available on the Town website. Citizen reporting is maintainined through the Engineering Department. | Provide a reporting mechanism and log. | Engineering
Department | April 1, 2017. | Citizen Reporting Form: https://www.wallingf ord.ct.us/Customer- Content/www/CMS/fi les/EngSvcReqRepFor m012820.pdf | | 3-4 Establish legal
authority to prohibit
illicit discharges (Due
7/1/19) | Completed | The Town wrote
and adoped a Stormwater Connection Ordinance, which was adopted in 2018. | Adopt ordinance | Law Department,
Engineering | March 14, 2018 | Ordinance No. 621:
https://ecode360.com
/33393542 | | 3-5 Develop record
keeping system for
IDDE tracking (Due
7/1/17) | Completed | | Maintain list. | Engineering
Department | April 1, 2017 | |---|-----------|---|--|----------------------------|-------------------------| | 3-6 Address IDDE in areas with pollutants of concern | Ongoing | Dry weather screening was conducted at 24 outfalls in 2021, Wet weather screening was conducted at six (6) priority outfalls. Catchment Rankings have been completed. SSOs are under investigation. | Wet weather testing and additional investigation as necessary. | Engineering
Departmment | Ongoing-Started in 2018 | ## 3.2 Describe any IDDE activities planned for the next year, if applicable. - 1. Continue Wet Weather sampling at priority outfalls discharging to impaired waters. - 2. Continue follow-up dry-weather screening/testing. - 3. Respond to any illicit discharge complaints - 4. Continue SSO investigations 3.3 Provide a record of all citizen reports of suspected illicit discharges and other illicit discharges occurring during the reporting period and SSOs occurring July 2017 through end of reporting period using the following table. Illicit discharges are any unpermitted discharge to waters of the state that do not consist entirely of stormwater or uncontaminated groundwater except those discharges identified in Section 3(a)(2) of the MS4 general permit when such non-stormwater discharges are not significant contributors of pollution to a discharge from an identified MS4. | Location (Lat long/ street crossing /address and receiving water) | Date and duration of occurrence | Discharge to
MS4 or
surface water | Estimated volume discharged | Known or
suspected cause
/ Responsible
party | Corrective measures planned and completed (include dates) | Sampling data
(if applicable) | |---|---------------------------------|---|-----------------------------|---|--|----------------------------------| | Nicholas Road | 7/13/2018 | Catch Basin
on Nicholas
Road | Unknown | A resident utilizing an RV was found to have been dumping the RV waste tank into the storm drain. | DEEP was contacted, as well as the Town. The resident was instructed that further dumping would result in fines. The resident was also provided a list of authorized RV waste dumping sites. | None. | | Old Gate Road. | 9/2/2019 | Catch basin
on Old Gate
Road | Unknown | A septic system pipe was found to have been illegally connected to the MS4 system, and was discharging to the storm drain. | The homeowner was instructed to and completed a capping of a 4" diameter PVC pipe that had been found discharging sanitary sewage into the Town's catch basin. | None. | |---------------------|-----------|------------------------------------|---------|--|---|---| | Durham Road | 4/24/2020 | Asmund Brook | Unknown | A retention pond utilized by a facility for washing quarried stone was found to have insufficient runoff controls. This in turn caused runoff to enter into the Asmund Brook, causing a distinct green discoloration of the water. | Based on the location of the discharge (Wallingford and Durham), this illicit discharge falls under the jurisdiction of Durham, and is currently under investigation. | Elevated concentrations of chromium, copper, nickel, zinc, and total suspended solids were found. | | Unknown | 6/1/2020 | | | Residential property-potential septic failure. | The Town completed an investigation, and determined that the discharge was groundwater from a nearby sump pump. No further action necessary. | None. | | 530 South Cherry | | | | | | | | Street | | | | | | | | 37 Country Way | | | | | | | | 33 Summerwood Drive | | | | | | | ## 3.4 Provide a summary of actions taken to address septic failures using the table below. | Method used to track illicit discharge reports | Location and nature of structure with failing septic systems | Actions taken to respond to and address the failures | Impacted waterbody or watershed, if known | Dept. / Person responsible | |--|--|---|---|----------------------------| | are managed by the Town H | , , | ins records of septic failures along with actions taken. In to formally coordinate with FVHD regarding records of the FVHD as well. | • | , | | | | | | | #### 3.5 Briefly describe the method and effectiveness of said method used to track illicit discharge reports. Residents of the Town can report illicit discharges to the Engineering Department through an online reporting form, which is available at https://www.wallingford.ct.us/government/departments/public-works/stormwater-and-you/. The Town then conducts follow-up investigations of reported IDDEs, and implements and/or enforces the discharge elimination. ## 3.6 IDDE reporting metrics | Metrics | | |--|--| | Estimated or actual number of MS4 outfalls | 1,113 | | Estimated or actual number of interconnections | 37 | | Outfall mapping complete | 95% (ongoing updates throughout permit lifetime. | | Interconnection mapping complete | 80% (Mapping of the CTDOT interconnections and several other surrounding towns has been completed. Interconnection screenings are still under investigation. | | System-wide mapping complete (detailed MS4 infrastructure) | 95% (Ongoing updates | | | throughout permit lifetime). | |--|--| | Outfall assessment and priority ranking | 95% (The majority of outfalls to impaired waterbocdies have been inspected and sampled. Six (6) priority outfalls have been chosen. Priority rankings have also been mapped, and may change throughout the permit lifetime based on future data. | | Dry weather screening of all High and Low priority outfalls complete | 70% (The majority of dry weather screening at outfalls in high priority outfalls and discharging to impaired waterbodies have been investigated. Outfalls throughout the entirety of the Town are continually being investigated. | | Catchment investigations complete | 90%. All catchments (utilizing basins for assessment purposes), have been ranked and prioritized. Due to the lengthy time needed to investigate all | | | septic repairs and/or failures, refer to Appendix III for the compelted Catchment Investigations. | |---|--| | Estimated percentage of MS4 catchment area investigated | 45% | # 3.7 Briefly describe the IDDE training for employees involved in carrying out IDDE tasks including what type of training is provided and how often it is given (minimum once per year). Annual training is generally provided to all Department of Public Works staff to recognize and report illicit discharges. Due to Covid-19 concerns, annual training was not provided to all Department of Public Works staff. Several meetings were held in coordination with Atlas and pertinent engineering and Department of Public Works staff pertaining to the MS4 permit. An annual training for all Department of Public Works is scheduled for spring of 2022. # 4. Construction Site Runoff Control (Section 6(a)(4) / page 25) | ВМР | Status
(Complete, Ongoing,
In Progress, or Not
started) | Activities in current reporting period | Measurable Goal | Department / Person
Responsible | Date completed or projected completion date (include the start date for anything that is 'in progress') | Additional details | |--|--
---|--|------------------------------------|---|---| | 4-1 Implement,
upgrade, and enforce
land use regulations
or other legal
authority to meet
requirements of MS4
general permit (Due
7/1/20) | Completed. | The Town has revised specific zoning and wetlands regulations to meet the needs for stormwater management as it pertains to construction. | Revise land-use
regulations | Planning and Zoning,
Wetlands. | July 1, 2017. | Ordinance No. 621:
https://ecode360.com
/33393542 | | 4-2 Develop/Implement plan for interdepartmental coordination in site plan review and approval (Ongoing) | Completed | Site plan reviews are completed by applicable departments. | Utilize interdepartmental coordination in site plan review and approval, as it pertains to the MS4 permit. | Planning and Zoning,
Wetlands | June 30, 2018-
ongoing throughout
permit lifetime. | | | 4-3 Review site plans
for stormwater
quality concerns
(Ongoing) | Completed | Site plans are reviewed for compliance with the contractor's Stormwater Management Plan. | Review revised plans for MS4 compliance, and issue review comments. | Planning and Zoning,
Wetlands. | July 1, 2017- ongoing throughout permit lifetime. | Projects that fall under the Planning and Zoning department are reviewed for compliance with the CTDOT drainage manual. The Town is also working towards modifying zoning ordiances in an effore to improve stormwater quality in priority areas, and within the Watershed Protection District. | | 4-4 Conduct site inspections (Ongoing) | | | Document inspections and actions. | | | | | 4-5 Implement procedure to allow public comment on site development (Ongoing) | Completed | Site inspections are completed on an as-needed basis. | Provide an opportunity for public comment/involvemen t. | Planning and Zoning,
Wetlands | July 1, 2017-ongoing
throughout permit
lifetime. | | |--|-----------|---|---|----------------------------------|---|--| | 4-6 Implement procedure to notify developers about DEEP construction stormwater permit (Ongoing) | Completed | Brochures and fliers are posted throughout applicable departments pertiaing to the DEEP construction stormwater permit. | Include comments to applications. | Planning and Zoning,
Wetlands | July 1, 2017-ongoing
throuhogut permit
lifetime. | The Town is looking to add this requirement to future applications for the Planning and Zoning department, as well as the wetlands department. | | Additional BMP:
4-7 Require Waste
Control onsite | | | Notify developers
about DEEP
permitting
obligations. | | July 31, 2019-ongoing
throughout permit
lifetime. | | # 4.2 Describe any Construction Site Runoff Control activities planned for the next year, if applicable. The Commission has hired a peer reviewer for proposed soil erosion and sediment control measures. as well as site inspections during construction. Most, if not all, permitted construction projects are subject to a Soil Erosion Bond with the Planning & Zoning Office, as well as site inspections of which observe soil erosion and sediment control measures throughout construction. # **5. Post-construction Stormwater Management** (Section 6(a)(5) / page 27) | ВМР | Status
(Complete,
Ongoing, In
Progress, or
Not
started) | Activities in current reporting period | Measurable
Goal | Department /
Person
Responsible | Date completed or projected completion date (include the start date for anything that is 'in progress') | Additional details | |--|--|---|---|--|---|--------------------| | 5-1 Establish and/or
update legal authority
and guidelines regarding
LID and runoff reduction
in site development
planning (Due 7/1/22) | Ongoing | Currently, regulations exist and are utilized for the enforcement of runoff reduction. The Town is looking to strengthen these regulations. | Adopt BMPs for any activity, operation, or facility which may cause or contribut to the pollution or contamination of stormwater, the storm drain system, or waters of the U.S. | Planning and
Zoning,
Wetlands. | July 1, 2020-
ongoing | | | 5-2 Enforce LID/runoff
reduction requirements
for development and
redevelopment projects
(Due 7/1/22) | Completed | A Stormwater Maintenance Plan is required for any area that is equal to or greater than 1 acre of disturbance. | Enforce regulations and guidelines of LID and runoff reductions. | Planning and
Zoning | July 1, 2019-
ongoing
throughout
permit lifetime. | | | 5-3 Identify retention
and detention ponds in
priority areas (Due
7/1/20) | Completed | All detention, retention, and sediment basins have been identified for the Town. Inspections are completed annually and cleaned where basins are found to have 50% of sediment in excess. | Compile a list and compelte mapping of Town-owned detention basins. | Engineering | July 1, 2019-
ongoing
throughout
permit lifetime. | | | 5-4 Implement long-
term maintenance plan
for stormwater basins
and treatment
structures (Ongoing) | Completed | The Department of Public Works and Engineering department coordinate inspections of basins on an annual basis, and facilitate maintenance on an as-needed basis. | Annually
inspect and
maintain
facilities. | Engineering,
Department of
Public Works. | July 1, 2019-
ongoing
throughout
permit lifetime. | | | 5-5 DCIA mapping (Due 7/1/20) | Completed | The Town's DCIA was calculated with assistance from Nathan L Jacobson & Associates. Atlas has mapped all DCIA areas through a GIS system. | Provide an understanding of the Town's overall DCIA to the MS4 infrastructure. | Engineering,
Nathan L.
Jacobson &
Associates,
Atlas. | June 2019 | |--|-----------|---|--|--|---| | 5-6 Address post-
construction issues in
areas with pollutants of
concern | Completed | In post-construction areas, if erosion or high accumulation of sedimentation are found during the annual inspections conducted under the long-term maintenance plan, the Town will prioritize these areas for DCIA retrofit projects. | Adress post-
construction
areas where
erosion or
high
accumulation
of
sedimentation
are found
during annual
inspections. | Engineering | July 1, 2020- ongoing throughout permit lifetime. | #### 5.2 Describe any Post-Construction Stormwater Management activities planned for the next year, if applicable. - 1. The Town will continue to monitor, clean, and repair settling/silting bsins, catch basins, outfalls, swales, etc. - 2. Develop process for annual inspections of Post-Construction Stormwater Management activities ### **5.3 Post-Construction Stormwater Management reporting metrics** For details on this requirement, visit https://nemo.uconn.edu/ms4/tasks/post-construction.htm. Scroll down to the DCIA section. | Metrics | | |---|--| | Baseline (2012) Directly Connected Impervious Area (DCIA) | 573.76 acres | | DCIA disconnected (redevelopment plus retrofits) | acres this year (TBD) / acres total (TBD) | | Retrofit projects completed | Under development | | DCIA disconnected | % this year (TBD) / % total since 2012 (TBD) | | Estimated cost of retrofits | \$TBD | | Detention or retention ponds identified | 17 this year /17 total | # 5.4 Briefly describe the method to be used to determine baseline DCIA. The DCIA Mapping was conducted in
substantial accordance with the methodologies presented in the October 25, 2017 UConn CLEAR Webinar entitled CT MS4 Mapping Details, Clarifications and Tools, the October 19, 2018 UConn CLEAR Workshop entitled CT MS4 Mapping Workshop as well as information contained in the EPA reference entitled Estimating Change in Impervious Area (IA) and Directly Connected Impervious Area (DCIA) for Massachusetts Small MS4 Permit utilizing Sutherland equations. The DCIA computations were prepared utilizing Connecticut Environmental Conditions Online MS4 base mapping prepared by UConn CLEAR. Impaired waters were determined from the report entitled 2018 Integrated Water Quality Report, dated August 01, 2019, prepared by the State of Connecticut Department of Energy and Environmental protection. The method to determine the 2012 baseline DCIA was to first compile the CT DEEP drainage basin characteristics in a Microsoft Excel spreadsheet. Information on the Connecticut Environmental Conditions Online MS4 Mapping was used to determine the impervious area breakdown as Buildings, Roads and Other. For CT DEEP drainage basins that fell in two or more municipalities the advanced mapping tab of Connecticut Environmental Conditions Online was used to delineate and determine the applicable town CT DEEP basin area. It was assumed that the entire drainage basin characteristics were directly proportional to the applicable town CT DEEP drainage basin area. In that ConnDOT has a MS4 Stormwater Program which applies to state owned roads and facilities which the town has no control over, it was decided that the impervious state road area would be determined and deducted from the total impervious road area for each CT DEEP drainage basin as the impervious road areas associated with state highways and facilities constitutes a considerable portion of the total town impervious road area. The ConnDOT state highway, parking lot and facility impervious road areas were then determined for each CT DEEP drainage basin. The ConnDOT state highway, parking lot and facility impervious road areas were then deducted from the total town impervious road area to determine a town owned impervious road area for each CT DEEP drainage basin. Subsequent to the above deduction, the total impervious area in acres and percentage was then recomputed for each CT DEEP drainage basin. The DCIA formula for each of four development types was then utilized to compute the DCIA. The impervious area in acres was assigned to each of the four Sutherland equations which were modified for the northeastern United State. The Sutherland equation to be utilized was determined using the following methodology: For impervious percentage less than 6%: 100% of the impervious area was assigned to the slight connectivity Sutherland Equation where DCIA% = 0.01*(IA%)2.0 For an impervious area between 6% and 12 %: 50% of the area was assigned to the partial connectivity Sutherland Equation where DCIA% = 0.04*(IA%)1.7 and 50% was assigned to the average connectivity Sutherland Equation where DCIA% = 0.10*(IA%)1.5 For an impervious area between 12% and 18 %: 50% of the area was assigned to the average connectivity Sutherland Equation where DCIA% = 0.10*(IA%)1.5 and 50% was assigned to the high connectivity Sutherland Equation where DCIA% = 0.40*(IA%)1.2 For an impervious area of greater than 18 %: 100% of the area was assigned to the high connectivity Sutherland Equation where DCIA% = 0.40*(IA%)1.2 The DCIA for each CT DEEP drainage basin was then summed to determine the entire town DCIA. Subsequent to completion of 2012 Baseline DCIA computations, UConn CLEAR Mapping available on Connecticut Environmental Conditions Online (CT ECO) was revised to separate road impervious area into State Road Impervious Area (Acres) and Town Road Impervious Area (Acres). The original 2012 Baseline DCIA computations were revised utilizing the UConn CLEAR State Road Impervious Area (Acres) and Town Road Impervious Area (Acres). # **6. Pollution Prevention/Good Housekeeping** (Section 6(a)(6) / page 31) | ВМР | Status
(Complete,
Ongoing, In
Progress,
or Not
started) | Activities in current reporting period | Measurable Goal | Department /
Person
Responsible | Date completed or projected completion date (include the start date for anything that is 'in progress') | Additional details | |--|--|--|--|--|---|--| | 6-1 Develop/implement
formal employee training
program (Ongoing) | Completed
Annually | All Department of Public Works personnel are trained with proper stormwater management procedures and spill control. | Eliminate non-
stormwater
discharges into the
storm sewers. | Department of
Public Works | Ongiong
throughout
permit lifetime | Due to Covid-19, restrictions of training were implemented. An annual training is planned for spring 2022. | | 6-2 Implement MS4 property and operations maintenance (Ongoing) | Completed | The Town utilizes a Spill Response
Team through the local fire
department. An SPCC plan is also
implemented at the DPW facility. | Eliminates/minimizes spills and/or pollutant relases to the environment and navigable waterways. | Department of
Public Works,
Local Fire
Department | December 31,
2019-ongoing
throughout
permit lifetime | | | 6-3 Implement coordination with interconnected MS4s | Completed | Coordination of the MS4 interconnection mapping began in 2019. CTDOT interconnections have been mapped, and coordination between the Town and surrounding areas is ongoing. | Update the GIS system with interconnected locations. | Engineering,
Department of
Public Works | December 31,
2018-ongoing
throughout
permit lifetime. | | | 6-4 Develop/implement
program to control other
sources of pollutants to
the MS4 | | A Spill Response Team has been developed in the Town utilizing the local fire department. | Reduce other possible pollutants to the MS4. | Department of
Public Works,
Local Fire
Department | Ongoing
throughout
permit lifetime. | | | 6-5 Evaluate additional measures for discharges to impaired waters* | Ongoing | Wet weather sampling events have been conducted, and priority outfalls were identified throughout the Town. Dry weather inspections are continuing to be conducted for the entirety of the Town. As catchments are investigated, the Town will coordinate with Atlas on future measures pertaining to the reduction of bacterial discharge to impaired waters. | Pending further investigations, create a program or plan of action to redcue bacterial discharge to impaired waters. | Engineering,
Atlas | Ongoing-started in 2021. | | | 6-6 Track projects that disconnect DCIA (Ongoing) | Ongoing | A Stormwater Retrofit Program has been drafted, and will be utilized as a method of tracking future DCIA disconnects. | Track DCIA
disconnects. | Engineering | Ongoing-drafted in 2021 | |--|-----------------------|--|--|---|---| | 6-7 Implement infrastructure repair/rehab program (Due 7/1/21) | Ongoing | The Town currently assesses and maintains stormwater structures throughout the Town. The Town implementes repairs or rehabilitation on an as-needed basis. | Reduce/eliminate causes or contributions of pollution or contaminaton of stormwater, the storm drain system, or waters of the U.S. | Department of
Public Works,
Engineering | Ongoing
throughout
permit lifetime. | | 6-8 Develop/implement plan to identify/prioritize retrofit projects (Due 7/1/20) | Ongoing | A Stormwater Retrofit Program has been drafted. Prioritized areas and/or sites were identified based off of DCIA calculations, impaired waterbodies, current stormwater infrastructure, and the MEP of the Town. | Develop retrofit projects. | Planning and
Zoning,
Engineering | Ongoing-started in 2021 | | 6-9 Implement retrofit projects to disconnect 2% of DCIA (Due 7/1/22) | Ongoing | As Retrofit Projects are identified, the Town will utilize the Impervious Cover Tracking Sheet to track and work towards disconnecting 2% of DCIA, or the MEP of the Town. | Track and reduce
DCIA impacts. | Planning and
Zoning,
Engineering | Ongoing-started in 2021 | | 6-10 Develop/implement
street sweeping program
(Ongoing) | Completed
annually | All streets are swept at least once a year to remove sand and/or other debris. | Track swept lane
miles. | Department of
Public Works. | Completed
Annually. | | 6-11 Develop/implement catch basin cleaning program (Ongoing) | Completed | The Town inspects approximately 1,000 catch basins a year. If a
catch basin is found to have a sediment load of 50% or greater, then the sediment is removed. | Track material usage, and update plan as needed. | Department of
Public Works. | Completed
Annually. | | 6-12 Develop/implement snow management practices (Due 7/1/18) | Completed | Snow management is implemented on an annual basis. Department of Public Works staff are aware of risks associated with snow distribution as well as the potential effects of runoff. Generally, excess snow is staged at | Track material usage, and update plan as needed. | Department of
Public Works | Completed
Annually. | | | | the property in which it is managed, and/or on the sides of raodways. Excess snow is transported and disposed of at the Town's Pent Road facility. | | | | | |---|-----------|--|---|-------------------------------|-----------|--| | Additional BMP:
6-13 New Road
Construction Projects | Completed | The Town has implemented the use of sheet flow drainage in an effort to eliminate or reduce the use of catch basins. This sheet flow drainage will be utilized as a BMP when road re-paving is underway. | Reduce pollutants to
the MS4, specifically
sediment overload. | Department of
Public Works | As needed | Reason for addition:
Reduce sedimentation of
waterways | # 6.2 Describe any Pollution Prevention/Good Housekeeping activities planned for the next year, if applicable. - 1. The Town will continue to conduct annual stormwater compliance training - 2. Assess and implement repairs/rehabilitation as-needed at MS4 basins. # 6.3 Pollution Prevention/ Good Housekeeping reporting metrics | Metrics | | |--|--| | Employee training provided for key staff | Covid restricted /
Scheduled for
Spring 2022 | | Street sweeping | | | Curb miles swept | miles miles | | Volume (or mass) of material collected | lbs or tons | | Catch basin cleaning | | | Total catch basins in priority areas (value will be less than or equal to total catch basins town or institution-wide) | 8,727 | | Total catch basins town- (or institution-) wide | 9,819 | | Catch basins inspected | # | | Catch basins cleaned | # | | Volume (or mass) of material removed from all catch basins | lbs or tons | | Volume removed from catch basins to impaired waters (if known) | lbs or tons | | Snow management | | | Type(s) of deicing material used | | | Total amount of each deicing material applied | lbs or tons | | Type(s) of deicing equipment used | | | Lane-miles treated (A lane-mile is a mile of roadway in a single driving lane) | <mark>miles</mark> | | Snow disposal location | | | Staff training provided on application methods & equipment | (y/n) / dates(s) | |--|------------------| | Municipal turf management program actions (for permittee properties in basins with N/P impairments) | | | Reduction in application of fertilizers (since start of permit) | lbs or % | | Reduction in turf area (since start of permit) | acres | | Lands with high potential to contribute bacteria (dog parks, parks with open water, & sites with failing septic systems) | | | Cost of mitigation actions/retrofits | \$TBD | #### 6.4 Catch basin cleaning program #### Provide any updates or modifications to your catch basin cleaning program. Approximatley 1,000 catch basins are inspected by the Department of Public Works on an annual basis. Catch basins that are found with over a 50% sediment load are cleaned. Catch basins in priority areas as well as catch basins with known historical issues are focuses on. A limited amount of staff and equipment perform this task. #### 6.5 Retrofit program Briefly describe the Retrofit Program identification and prioritization process, the projects selected for implementation, the rationale for the selection of those projects and the total DCIA to be disconnected upon completion of each project. (Due 7/1/20) The Stormwater Retrofit Program was drafted by the Town and Atlas in 2021. The Program was designed to provide guidance on implementing LID, runoff reduction measures, or other means to disconnect or improve stormwater quality. To meet the 2% MEP disconnection goal, DCIA calculations, Urbanized areas, Impaired Waterbodies, and Catchment Rankings were utilized in identifying and prioritizing areas and/or projects to be selected for retrofits. DCIA by Catchment was identified utilizing the the following formulas: #### **High Connectivity** DCIA%=0.4*(IA %)^1.2 Directly Connected Area= (DCIA)(IC Acres) #### **Average Connectivity** DCIA%=0.1*(IA%)^1.5 Directly Connected Area= (DCIA)(IC Acres) #### Partial Connectivity DCIA%=0.04*(IA%)^1.7 Directly Connected Area= (DCIA)(IC Acres) #### Slight Connectivity DCIA%=0.01*(IA%)^2.0 Directly Connected Area= (DCIA)(IC Acres) The Average Connectivity calculation was utilized in assessing the Town's DCIA connectivity, based on the majority of land use defined as agricultural and/or rural, minor residential communities, and minor-to-moderate commercial or indudustrialized areas. Based on the Average Connectivity calculations for each catchment, no catchments were identified with a connectivity of 11% or greater. Catchments were then prioritized utilizing the total urbanized area per catchment. Atlas was provided with a shapefile of the 2010 Urbanized Areas for the Town from the 2010 Census or Urban Classificiations, which was imported into ArcGIS for calculation purposes. Utilizing the Overlay-Intersect Tool, Atlas was able to extract the total Urbanized Area acreage per catchment, and then calculate the Urbanized area percentage per catchment utilizing the following formula: Urbanized Area (Ac.)/Basin Total Acreage*100 Based on these calculations, 72 catchments were identified with Urbanized Areas. 20 catchments containing impaired waterbodies were identified for the Town. Catchment Priority Rankings were conducted for all Sub-Basins in the Town. Multiple factors were taken into consideration when scoring each catchment, including but not limited to DCIA calculations, previous screening results, age of development/structures, density of generating sites, nearby sewer repairs, urbanized areas, and impaired waterbodies. 66 catchments were identified as Problem or High Priority. Specific criteria was utilizing in defining priority areas for the implementation of non-municipal retrofit projects. The criteria utilized in defining priority areas of non-municipal retrofit projects included High or Problem catchment priority rankings, catchments containing an impaired waterbody, and catchments identified with an urbanized area. Utilizing ArcGIS, Atlas extracted catchments where two (2) or more of the aforementioned criteria were found. Community outreach or project redevelopment is encouraged in these defined catchments. Municipal-owned retrofit projects were identified for several schools, and other municipal-owned sites such as the Fire Department, Town Hall, etc. These locations were selected based on location and plausibility of future disconnects. Refer to the attached draft Stormwater Retrofit Program (**Appendix V**) for further information on these projects. #### Describe plans for continuing the Retrofit program and how to achieve a goal of 1% DCIA disconnection annually in future years. (Due 7/1/22) The Stormwater Retrofit Program, included in **Attachment V**, is designed to comply with *Section (6) (B) (ii)* of the CTDEEP 2017-2022 MS4 Permit. The Town of Wallingford will work towards disconnecting existing DCIA. The initial focus of the Stormwater Retrofit Program will first be applied to Town-owned properties, parks, and other facilities, followed by a focus of non-municipal facilities, parks, communities, or other redevelopments. Progress towards the DCIA disconnects will be tracked and continuously updated, with a goal to disconnect one percent (1%) of DCIA or to the MEP each year following the fifth year of the MS4 permit. ## Part II: Impaired waters investigation and monitoring # 1. Impaired waters investigation and monitoring program For details on this requirement, visit https://nemo.uconn.edu/ms4/tasks/monitoring.htm. Refer to the yellow column of the Monitoring comparison chart and the Impaired waters monitoring flowchart. **1.1** Indicate which stormwater pollutant(s) of concern occur(s) in your municipality or institution. This data is available on the MS4 map viewer: http://s.uconn.edu/ctms4map. | Nitrogen/ Phosphorus | Bacteria 🛚 | Mercury 🗌 | Other Pollutant of Concern | \boxtimes | |----------------------|------------|-----------|----------------------------|-------------| |----------------------|------------|-----------|----------------------------|-------------| #### 1.2 Describe program status Discuss 1) the status of monitoring work completed, 2) a summary of the results and any notable findings, and 3) any changes to the Stormwater Management Plan based on monitoring results. To date, 112 outfalls discharging to impaired waterbodies have been investigated, 88 of which have been sampled during wet weather events, including six (6) priority outfalls on an annual basis. Stormwater discharge analytical results are indicative of elevated bacterial concetnrations. Outfalls that discharge to impaired waterbodies with "other pollutant of concern" have
indicated generally low turnbidity, with the exception of select outfalls to Wharton's Brook. Additional sampling and dry-weather screening for remaining outfalls continues. # 2. Screening data for outfalls to impaired waterbodies (Section 6(i)(1) / page 41) ## 2.1 Screening data Complete the table below to report data for any wet weather sampling completed for MS4 outfalls that discharge directly to a stormwater impaired waterbody during the reporting period. For details on this requirement, visit www.nemo.uconn.edu/ms4/tasks/monitoring.htm. Refer to the yellow column of the Monitoring comparison chart and the Impaired waters monitoring flowchart. Each Annual Report will add on to the previous year's data showing a cumulative list of sampling data. You may also attach an excel spreadsheet with the same data rather than copying it into this table. If you do attach a spreadsheet, please write "See Attachment" below. | Outfall ID | Latitude /
Longitude | Sample
date | Parameter
(Nitrogen,
Phosphorus,
Bacteria, or Other
pollutant of
concern) | Results | Name of
Laboratory (if
used) | Follow-up required? * | |------------|--------------------------|----------------|--|-------------------------|------------------------------------|-----------------------| | LH-2 | 41.435775/
-72.824375 | 6/10/2019 | Other | Turbidity: <5
NTU | N/A | None. | | LH-3 | 41.434435/
-72.824212 | 6/10/2019 | Other | Turbidity 19.32
NTU | N/A | Yes | | LH-6 | 41.43099/ -
72.820112 | 6/10/2019 | Other | Turbidity 10.67
NTU | N/A | Yes | | LH-7 | 41.430894/
-72.819874 | 6/10/2019 | Other | Turbidity: 9.67
NTU | N/A | Yes | | LH-8 | 41.431369/
-72.817063 | 6/10/2019 | Other | Turbidity: 23.99
NTU | N/A | Yes | | LH-9 | 41.433966/
-72.813953 | 6/10/2019 | Other | Turbidity: 7.32
NTU | N/A | Yes | | MR-2 | 41.406323/
-72.803502 | 6/10/2019 | Other | Turbidity: 0.16
NTU | N/A | No | | MR-3 | 41.406275/
-72.803362 | 6/10/2019 | Other | Turbidity: 0.01
NTU | N/A | No | | WB-48 | 41.432293/
-72.832283 | 6/10/2019 | Other | Turbidity: 0.48
NTU | N/A | No | | WB-28 | 41.450357/
-72.814351 | 6/10/2019 | Other | Turbidity: 5.86
NTu | N/A | Yes | | WB-29 | 41.450074/
-72.81412 | 6/10/2019 | Other | Turbidity: 47.02
NTU | N/A | Yes | |-------|--------------------------|-----------|-------|-------------------------|-----|-----| | WB-30 | 41.449968/
-72.813939 | 6/10/2019 | Other | Turbidity: 45.02
NTU | N/A | Yes | | WB-31 | | 6/10/2019 | Other | Turbidity: 16.3
NTU | N/A | Yes | | WB-33 | 41.448559/
-72.815494 | 6/10/2019 | Other | Turbidity: 11.6
NTU | N/A | Yes | | QR-11 | 41.462104/
-72.826282 | 6/10/2019 | Other | Turbidity: 17.59
NTU | N/A | Yes | | QR-12 | 41.459841/
-72.827471 | 6/10/2019 | Other | Turbidity: 6.62
NTU | N/A | Yes | | WB-11 | 41.463681/
-72.795415 | 6/25/2019 | Other | Turbidity: 3.6
NTu | N/A | No | | WB-17 | 41.460981/
-72.797429 | 6/25/2019 | Other | Turbidity 3.1
NTU | N/A | No | | WB-18 | 41.460693/
-72.797471 | 6/25/2019 | Other | Turbidity: 6.8
NTU | N/A | Yes | | WB-20 | 41.459926/
-72.797676 | 6/25/2019 | Other | Turbidity: 6.1
NTU | N/A | Yes | | WB-21 | 41.458646/
-72.798128 | 6/25/2019 | Other | Turbidity: 10.6
NTU | N/A | Yes | | WB-22 | 41.45617/ -
72.803508 | 6/25/2019 | Other | Turbidity: 17.4
NTU | N/A | Yes | | WB-23 | 41.456125/
-72.803435 | 6/25/2019 | Other | Turbidity: 44.1
NTU | N/A | Yes | | WB-34 | 41.448097/
-72.81762 | 6/25/2019 | Other | Turbidity: 61.5
NTU | N/A | Yes | | WB-35 | | 6/25/2019 | Other | Turbidity: 107.4
NTU | N/A | Yes | | QR-13 | 41.458836/
-72.835459 | 6/25/2019 | Other | Turbidity: 16.2
NTU | N/A | Yes | | QR-15 | 41.458434/
-72.835647 | 6/25/2019 | Other | Turbidity: 14.6
NTU | N/A | Yes | | QR-16 | 41.458395/
-72.835737 | 6/25/2019 | Other | Turbidity: 14.8
NTU | N/A | Yes | | QR-17 | 41.458125/
-72.836198 | 6/25/2019 | Other | Turbidity: 46.8
NTU | N/A | Yes | | QR-23 | 41.432676/
-72.85064 | 6/25/2019 | Other | Turbidity: 44.1
NTU | N/A | Yes | | LH-12 | 41.435807/
-72.808388 | 6/25/2019 | Other | Turbidity: 26.9
NTU | N/A | Yes | | WB-1 | 41.482996/
-72.782988 | 3/13/2020 | Other | Turbidity: 19.48
NTU | N/A | Yes | | WB-2 | 41.479369/
-72.785385 | 3/13/2020 | Other | Turbidity: 13.35
NTU | N/A | Yes | |-------|--------------------------|-----------|-------|-------------------------|-----|-----| | WB-3 | 41.477169/
-72.785469 | 3/13/2020 | Other | Turbidity: 10.67
NTU | N/A | Yes | | WB-4 | 41.475873/
-72.78748 | 3/13/2020 | Other | Turbidity: 8.67
NTU | N/A | Yes | | WB-5 | 41.472614/
-72.793405 | 3/13/2020 | Other | Turbidity: 12.56
NTU | N/A | Yes | | WB-6 | 41.470504/
-72.794556 | 3/13/2020 | Other | Turbidity: 8.83
NTU | N/A | Yes | | WB-7 | 41.470374/
-72.794619 | 3/13/2020 | Other | Turbidity: 8.83
NTU | N/A | Yes | | WB-8 | 41.469592/
-72.795031 | 3/13/2020 | Other | Turbidity: 9.29
NTU | N/A | Yes | | WB-12 | 41.463192/
-72.795656 | 3/13/2020 | Other | Turbidity: 160.9
NTU | N/A | Yes | | WB-13 | 41.46227/ -
72.796111 | 3/13/2020 | Other | Turbidity: 17.24
NTU | N/A | Yes | | WB-14 | 41.463438/
-72.796459 | 3/13/2020 | Other | Turbidity: 12.06
NTU | N/A | Yes | | WB-16 | 41.461334/
-72.79699 | 3/13/2020 | Other | Turbidity: 24.19
NTU | N/A | Yes | | WB-18 | 41.460693/
-72.797471 | 3/13/2020 | Other | Turbidity: 31.11
NTU | N/A | Yes | | WB-20 | 41.459926/
-72.797676 | 3/13/2020 | Other | Turbidity: 1.61
NTU | N/A | No | | WB-21 | 41.458646/
-72.798128 | 3/13/2020 | Other | Turbidity: 2.19
NTU | N/A | No | | WB-22 | 41.45617/ -
72.803508 | 3/13/2020 | Other | Turbidity: 19.91
NTU | N/A | Yes | | WB-23 | 41.456125/
-72.803435 | 3/13/2020 | Other | Turbidity: 18.63
NTU | N/A | Yes | | WB-24 | 41.453328/
-72.804466 | 3/13/2020 | Other | Turbidity: 11.18
NTU | N/A | Yes | | WB-25 | 41.451907/
-72.813452 | 3/13/2020 | Other | Turbidity: 25.61
NTU | N/A | Yes | | WB-26 | 41.451921/
-72.813353 | 3/13/2020 | Other | Turbidity: 10.61
NTU | N/A | Yes | | WB-27 | 41.45189/ -
72.813288 | 3/13/2020 | Other | Turbidity: 90.81
NTU | N/A | Yes | | WB-28 | 41.450357/
-72.814351 | 3/13/2020 | Other | Turbidity: 11.24
NTU | N/A | Yes | | WB-29 | 41.450074/
-72.81412 | 3/13/2020 | Other | Turbidity: 38.57
NTU | N/A | Yes | | WB-30 | 41.449968/
-72.813939 | 3/13/2020 | Other | Turbidity: 9.16
NTU | N/A | Yes | |-------|--------------------------|-----------|-------|--|-----|-----| | WB-31 | | 3/13/2020 | Other | Turbidity: 25.50
NTU | N/A | Yes | | WB-32 | 41.449435/
-72.815047 | 3/13/2020 | Other | Turbidity: 22.46
NTU | N/A | Yes | | WB-33 | 41.438152/
-72.824277 | 3/13/2020 | Other | Turbidity: 20.65
NTU | N/A | Yes | | WB-34 | 41.448097/
-72.81762 | 3/13/2020 | Other | Turbidity: 20.72
NTU | N/A | Yes | | WB-35 | | 3/13/2020 | Other | Turbidity: 20.68
NTU | N/A | Yes | | WB-36 | 41.446483/
-72.819608 | 3/13/2020 | Other | Turbidity: 20.44
NTU | N/A | Yes | | WB-37 | 41.444777/
-72.818079 | 3/13/2020 | Other | Turbidity: 10.12
NTU | N/A | Yes | | WB-38 | 41.44401/ -
72.82061 | 3/13/2020 | Other | Turbidity: 15.64
NTU | N/A | Yes | | WB-39 | 41.443093/
-72.818226 | 3/13/2020 | Other | Turbidity: 12.63
NTU | N/A | Yes | | WB-41 | 41.442284/
-72.819275 | 3/13/2020 | Other | Turbidity: 15.96
NTU | N/A | Yes | | WB-24 | 41.453328/
-72.804466 | 4/21/2020 | Other | Turbidity: <5
NTU | N/A | No | | WB-25 | 41.451907/
-72.813452 | | Other | Outfall destroyed. No samples collected. | N/A | | | WB-26 | 41.451921/
-72.813353 | 4/21/2020 | Other | Turbidity: >5
NTU | N/A | Yes | | WB-27 | 41.45189/ -
72.813288 | 4/21/2020 | Other | Turbidity: >5
NTU | N/A | Yes | | QR-1 | 41.503345/
-72.824605 | 4/21/2020 | Other | Turbidity: >5
NTU | N/A | Yes | | QR-3 | 41.499705/
-72.818617 | 4/21/2020 | Other | Turbidity: >5
NTU | N/A | Yes | | QR-5 | 41.487679/
-72.818601 | 4/21/2020 | Other | Turbidity: >5
NTU | N/A | Yes | | QR-7 | 41.487413/
-72.820477 | 4/24/2020 | Other | Turbidity: <5
NTU | N/A | No | | WB-12 | 41.463192/
-72.795656 | 4/24/2020 | Other | Turbidity: 29.32
NTU | N/A | Yes | | WB-13 | 41.46227/ -
72.796111 | 4/24/2020 | Other | Turbidity: 9.55
NTU | N/A | Yes | | WB-32 | 41.449435/
-72.815047 | 4/24/2020 | Other | Turbidity: 7.89
NTU | N/A | Yes | |-------|--------------------------|--------------------------|-----------------|--|--------------------------|-----| | WB-36 | 41.446483/
-72.819608 | 4/24/2020 | Other | Turbidity: 8.75
NTU | N/A | Yes | | WB-41 | 41.442284/
-72.819275 | 4/24/2020 | Other | Turbidity: 2.39
NTU | N/A | No | | WB-45 | 41.436769/
-72.831613 | 4/24/2020 | Other | Turbidity: 4.16
NTU | N/A | No | | MR-1 | 41.405734/
-72.804528 | 04/30/2020 | Bacteria, Other | E.coli: 5,790 Total Coliform: > 24,200 | Phoenix
Environmental | Yes | | MR-2 | 41.406323/
-72.803502 | 9/10/2020 | Bacteria, Other | E. coli: 3,870 Total Coliform: >24,200 | Phoenix
Environmental | Yes | | QR-6 | 41.487533/
-72.820636 | 04/24/2020 | Bacteria, Other | E.coli: 4,610 Total Coliform: >24,200 | Phoenix
Environmental | Yes | | QR-8 | 41.485489/
-72.822444 | 04/24/2020 | Bacteria, Other | E.coli: 631
Total Coliform:
>24,200 | Phoenix
Environmental | Yes | | QR-9 | 41.46664/ -
72.823797 | 04/30/2020,
9/10/2020 | Bacteria, Other | E.coli: 8,160 Total Coliform: >2 4,200 | Phoenix
Environmental | Yes | | QR-10 | 41.46408/ -
72.824739 | 9/10/2020 | Bacteria, Other |
E.coli: >24,200
Total Coliform:
>24,200 | Phoenix
Environmental | Yes | | QR-11 | 41.462104/
-72.826282 | 9/10/2020 | Bacteria, Other | E. coli: >24,200
Total Coliform:
>24,200 | Phoenix
Environmental | Yes | | QR-17 | 41.458125/
-72.836198 | 04/13/2020 | Bacteria, Other | E.coli: 3,450 Total Coliform: >24,200 | Phoenix
Environmental | Yes | | AB-1 | 41.424694/
-72.825552 | 9/10/2020 | Bacteria | E. coli: 24,200 Total Coliform: > 24,200 | Phoenix
Environmental | Yes | | AB-2 | 41.424813/
-72.823668 | 9/10/2020 | Bacteria | E. coli: 3,870 Total Coliform: > 24,200 | Phoenix
Environmental | Yes | | AB-3 | 41.428012/
-72.813003 | 9/10/2020 | Bacteria | E. coli: 880 Total Coliform: >24,200 | Phoenix
Environmental | Yes | | AB-4 | 41.428283/
-72.811922 | 9/10/2020 | Bacteria | E. coli: 195 Total Coliform: > 24,200 | Phoenix
Environmental | Yes | | OF-247 | 41.49404/ - | 9/1/2021 | Bacteria, Other | E. coli: 97 | Phoenix | Yes | |--------|--------------------------|----------|-----------------|--|--------------------------|-----| | | 72.809227 | | | Total Coliform: >24,200 Turbidity: 11.81 NTU | Environmental | | | OF-54 | 41.499899/
-72.818361 | 9/1/2021 | Bacteria, Other | E. coli: 6,870 Total Coliform: > 24,200 Phosphorus: 0.207 mg/L | Phoenix
Environmental | Yes | | OF-269 | 41.504222/
-72.820081 | 9/1/2021 | Bacteria, Other | E. coli: 6,870 Total Coliform: >24,200 Turbidity: 159.8 NTU | Phoenix
Environmental | Yes | | OF-270 | 41.506531/
-72.818521 | 9/1/2021 | Bacteria, Other | E. coli: 19,900
Total Coliform:
>24,200
Turbidity: 41.69
NTU | Phoenix
Environmental | Yes | | QR-6 | 41.487533/
-72.820636 | 9/1/2021 | Bacteria, Other | E. coli: >24,200 Total Coliform: >24,200 Phosphorus: 0.171 mg/L | Phoenix
Environmental | Yes | | QR-8 | 41.485489/
-72.822444 | 9/1/2021 | Bacteria, Other | E. coli: >24,200 Total Coliform: >24,200 Phosphorus: 0.236 mg/L | Phoenix
Environmental | Yes | | QR-10 | 41.46664/ -
72.823797 | 9/1/2021 | Bacteria, Other | E. coli: 2,910 Total Coliform: > 24,200 Phosphorus: 0.182 mg/L | Phoenix
Environmental | Yes | | QR-11 | 41.46408/ -
72.824739 | 9/1/2021 | Bacteria, Other | E. coli: 816 Total Coliform: > 24,200 Phosphorus: 0.063 mg/L | Phoenix
Environmental | Yes | | QR-17 | 41.462104/
-72.826282 | 9/1/2021 | Bacteria, Other | E. coli: >24,200 Total Coliform: >24,200 Phosphorus: 0.458 mg/L | Phoenix
Environmental | Yes | | AB-1 | 41.424694/
-72.825552 | 9/1/2021 | Bacteria | E. coli: 670 Total Coliform: | Phoenix
Environmental | Yes | |------|--------------------------|----------|----------|--|--------------------------|-----| | AB-2 | 41.424813/
-72.823668 | 9/1/2021 | Bacteria | >24,200
E. coli: 20
Total Coliform:
>24,200 | Phoenix
Environmental | Yes | | AB-3 | 41.428012/
-72.813003 | 9/1/2021 | Bacteria | E. coli: 3,130 Total Coliform: >2 4,200 | Phoenix
Environmental | Yes | | AB-4 | 41.428283/
-72.811922 | 9/1/2021 | Bacteria | E. coli: 1,270 Total Coliform: > 24,200 | Phoenix
Environmental | Yes | | MR-1 | 41.405734/
-72.804528 | 9/1/2021 | Bacteria | E. coli: 11,200 Total Coliform: > 24,200 | Phoenix
Environmental | Yes | | MR-2 | 41.406323/
-72.803502 | 9/1/2021 | Bacteria | E. coli: 3,870 Total Coliform: > 24,200 | Phoenix
Environmental | Yes | Follow-up investigation required (last column) if the following pollutant thresholds are exceeded: | Pollutant of concern | Pollutant threshold | |-----------------------------|--| | Nitrogen | Total N > 2.5 mg/l | | Phosphorus | Total P > 0.3 mg/l | | Bacteria (fresh waterbody) | E. coli > 235 col/100ml for swimming areas or 410 col/100ml for all others Total Coliform > 500 col/100ml | | Bacteria (salt waterbody) | Fecal Coliform > 31 col/100ml for Class SA and > 260 col/100ml for Class SB Enterococci > 104 col/100ml for swimming areas or 500 col/100 for all others | | Other pollutants of concern | Sample turbidity is 5 NTU > in-stream sample | # **3. Follow-up investigations** (Section 6(i)(1)(D) / page 43) Provide the following information for outfalls exceeding the pollutant threshold. | Outfall ID | Status of drainage area investigation | Control measure to address impairment | |------------|---|--| | See above- | Investigations are being conducted on the surrounding drainage areas, | Potential measures that may be used in | | listed | with a focus on surrounding runoff from agricultural land, septic rpairs, | addressing bacterial impairments include | | outfalls. | and septic failures. | aquatic vegetative buffers, control runoff | | | | measures implemented. Discussions are | | underway within the Town on how to | |--| | address potential septic failures or repairs | | at privately-owned properties. | # **4. Prioritized outfall monitoring** (Section 6(i)(1)(D) / page 43) Once outfall sampling has been completed for at least 50% of outfalls to impaired waters, identify 6 of the highest contributors of any pollutants of concern. Begin monitoring these outfalls on an annual basis by July 1, 2021. You may also attach an excel spreadsheet with the same data rather than copying it to this table. If you do attach a spreadsheet, please write "See Attachment" below. | Outfall | Latitude /
Longitude | Sample
Date | Parameter(s) | Results | Name of Laboratory (if used) | |---------|--------------------------|--------------------------|-----------------|---|------------------------------| | QR-6 | 41.487533/ | 04/24/2020 | Bacteria, Other | E.coli: 4,610 | Phoenix Environmental | | QK-0 | -72.820636 | 04/24/2020 | Bacteria, Other | Total Coliform: >24,200 | Prioentx Environmental | | QR-8 | 41.485489/
-72.822444 | 04/24/2020 | Bacteria, Other | E.coli: 631 Total Coliform: > 24,200 | Phoenix Environmental | | QR-10 | 41.46664/
-72.823797 | 04/30/2020,
9/10/2020 | Bacteria, Other | E.coli: 8,160
Total Coliform: > 24,200 | Phoenix Environmental | | QR-11 | 41.46408/
-72.824739 | 9/10/2020 | Bacteria, Other | E.coli: >24,200
Total Coliform: >24,200 | Phoenix Environmental | | QR-17 | 41.462104/
-72.826282 | 9/10/2020 | Bacteria, Other | E. coli: >24,200
Total Coliform: >24,200 | Phoenix Environmental | | AB-1 | 41.424694/
-72.825552 | 9/10/2020 | Bacteria | E. coli: 24,200
Total Coliform: >24,200 | Phoenix Environmental | | AB-2 | 41.424813/
-72.823668 | 9/10/2020 | Bacteria | E. coli: 3,870
Total Coliform: >24,200 | Phoenix Environmental | | AB-3 | 41.428012/
-72.813003 | 9/10/2020 | Bacteria | E. coli: 880
Total Coliform: >24,200 | Phoenix Environmental | | AB-4 | 41.428283/
-72.811922 | 9/10/2020 | Bacteria | E. coli: 195 Total Coliform: > 24,200 | Phoenix Environmental | | MR-1 | 41.405734/
-72.804528 | 04/30/2020 | Bacteria, Other | E.coli: 5,790
Total Coliform: >24,200 | Phoenix Environmental | | MR-2 | 41.406323/
-72.803502 | 9/10/2020 | Bacteria, Other | E. coli: 3,870
Total Coliform: >24,200 | Phoenix Environmental | | QR-6 | 41.487533/
-72.820636 | 9/1/2021 | Bacteria, Other | E. coli: >24,200
Total Coliform: >24,200
Phosphorus: 0.171 mg/L | Phoenix Environmental | | QR-8 | 41.485489/
-72.822444 | 9/1/2021 | Bacteria, Other | E. coli: >24,200
Total Coliform: >24,200
Phosphorus: 0.236 mg/L | Phoenix Environmental | | QR-10 | 41.46664/
-72.823797 | 9/1/2021 | Bacteria, Other | E. coli: 2,910
Total Coliform: >24,200 | Phoenix Environmental | | | | | | Phosphorus: 0.182 mg/L | | |-------|--------------------------|----------|-----------------|--|-----------------------| | QR-11 | 41.46408/
-72.824739 | 9/1/2021 | Bacteria, Other | E. coli: 816 Total Coliform: >24,200 Phosphorus: 0.063 mg/L | Phoenix Environmental | | QR-17 | 41.462104/
-72.826282 | 9/1/2021 | Bacteria, Other | E. coli: >24,200
Total Coliform: >24,200
Phosphorus: 0.458 mg/L | Phoenix Environmental | | AB-1 | 41.424694/
-72.825552 | 9/1/2021 | Bacteria | E. coli: 670
Total Coliform: >24,200 | Phoenix Environmental | | AB-2 | 41.424813/
-72.823668 | 9/1/2021 | Bacteria | E. coli: 20
Total Coliform: >24,200 | Phoenix Environmental | | AB-3 | 41.428012/
-72.813003 | 9/1/2021 | Bacteria | E. coli: 3,130
Total Coliform: >24,200 | Phoenix Environmental | | AB-4 | 41.428283/
-72.811922 | 9/1/2021 | Bacteria | E. coli: 1,270
Total Coliform: >24,200 | Phoenix Environmental | | MR-1 | 41.405734/
-72.804528 | 9/1/2021 | Bacteria | E. coli: 11,200
Total Coliform: > 24,200 | Phoenix Environmental | | MR-2 | 41.406323/
-72.803502 | 9/1/2021 | Bacteria | E. coli: 3,870
Total Coliform: >24,200 | Phoenix Environmental | # Part III: Additional IDDE Program Data # 1. Assessment and Priority Ranking of Catchments data (Appendix B (A)(7)(c) / page 5) Provide a list of all catchments with ranking results (DEEP basins
may be used instead of manual catchment delineations). | 1. Catchment ID
(DEEP Basin ID) | 2. Category | 3. Rank | |------------------------------------|--------------|---------| | 4606-00-1 | Low Priority | 2 | | 4606-01-1 | Low Priority | 2 | | 4606-02-1 | Low Priority | 2 | | 4607-10-1-L1 | Low Priority | 2 | | 5112-00-2-L1 | Problem | 7 | | 5112-02-1 | Problem | 6 | | 5112-03-1 F | ow Priority Problem High Priority | 6 | |-----------------|-----------------------------------|----| | | | 6 | | | ligh Priority | | | 5200-00-4-L3 H | | 11 | | 5200-00-4-R10 H | ligh Priority | 13 | | 5200-00-4-R11 F | Problem | 9 | | 5200-00-4-R12 | ligh Priority | 11 | | 5200-00-4-R7 | ligh Priority | 15 | | 5200-00-4-R8 | ligh Priority | 13 | | 5200-10-1 | ligh Priority | 11 | | 5200-10-2-R1 H | ligh Priority | 13 | | 5200-11-1 H | ligh Priority | 11 | | 5200-12-1 H | ligh Priority | 12 | | 5200-12-1-L1 H | ligh Priority | 12 | | 5200-13-1 H | ligh Priority | 16 | | 5200-14-1 L | ow Priority | 4 | | 5200-14-1-L1 F | Problem | 9 | | 5200-15-1 F | Problem | 9 | | 5200-16-1 L | ow Priority | 2 | | 5200-17-1 L | ow Priority | 4 | | 5200-19-1-L1 L | ow Priority | 5 | | 5204-00-2-L1 L | ow Priority | 5 | | 5204-01-1 | Low Priority | 3 | |--------------|---------------|----| | 5204-02-1 | Low Priority | 5 | | 5206-01-1-L1 | Low Priority | 4 | | 5206-02-1-L1 | High Priority | 10 | | 5207-00-1 | High Priority | 13 | | 5207-00-1-L1 | Low Priority | 4 | | 5207-00-1-L2 | High Priority | 12 | | 5207-00-2-R1 | High Priority | 13 | | 5207-00-2-R2 | High Priority | 12 | | 5207-01-1 | High Priority | 13 | | 5207-02-1 | Problem | 6 | | 5207-02-1-L1 | High Priority | 13 | | 5208-00-1 | Problem | 7 | | 5208-00-1-L1 | Problem | 10 | | 5208-00-2-R1 | Problem | 7 | | 5208-00-3-L2 | Low Priority | 5 | | 5208-00-3-L3 | High Priority | 10 | | 5208-00-3-R1 | Problem | 9 | | 5208-00-3-R2 | High Priority | 10 | | 5208-00-3-R3 | High Priority | 10 | | 5208-00-3-R4 | Problem | 6 | | 5208-00-3-R5 | Problem | 6 | | | | | | 5208-01-1 | Problem | 8 | |--------------|---------------|----| | 5208-02-1 | Low Priority | 3 | | 5208-02-1-L1 | Problem | 6 | | 5208-02-2-R1 | Problem | 8 | | 5208-03-1 | Problem | 7 | | 5208-04-1 | Low Priority | 5 | | 5208-04-1-L1 | Low Priority | 3 | | 5208-05-1 | Low Priority | 3 | | 5208-05-1-L1 | Low Priority | 4 | | 5208-06-1 | Problem | 8 | | 5208-07-1 | Low Priority | 5 | | 5208-08-1 | Problem | 8 | | 5208-09-1 | Low Priority | 3 | | 5302-02-1 | Problem | 8 | | 5302-04-1-L1 | High Priority | 11 | # 2. Outfall and Interconnection Screening and Sampling data (Appendix B (A)(7)(d) / page 7) # 2.1 Dry weather screening and sampling data from outfalls and interconnections For details on this requirement, visit https://nemo.uconn.edu/ms4/tasks/monitoring.htm. Refer to the blue column of the Monitoring comparison chart and the IDDE baseline monitoring flowchart. Provide sample data for outfalls where flow is observed. Only include Pollutant of concern data for outfalls that discharge into stormwater impaired waterbodies. You may also attach an excel spreadsheet with the same data rather than copying it to this table. If you do attach a spreadsheet, please write "See Attachment" below. | Outfall /
Interconnection
ID | Latitude /
Longitude | Screening /
sample
date | Ammonia | Chlorine | Conductivity | Salinity | E. coli or enterococcus | Surfactants | Water
Temp | Pollutant
of
concern | If required, follow-
up actions taken | |------------------------------------|-------------------------|-------------------------------|---------|----------|--------------|----------|-------------------------|-------------|---------------|----------------------------|--| | OF-64 | | 10/20/20
21 | - | - | - | - | - | - | - | None | During dry weather screenings, this outfall was found tot have a very slight discharge. Atlas conducted further field investigations, and it was concluded that the discharge was soley that of groundwater influence on the MS4 system, and not of an IDDE. | # 2.2 Wet weather sample and inspection data For details on this requirement, visit https://nemo.uconn.edu/ms4/tasks/monitoring.htm. Refer to the green column of the Monitoring comparison chart and the IDDE catchment investigation flowchart. Provide sample data for outfalls and key junction manholes of any catchment area with at least one System Vulnerability Factor. You may also attach an excel spreadsheet with the same data rather than copying it to this table. If you do attach a spreadsheet, please write "See Attachment" below. | Outfall /
Interconnection
ID | Latitude /
Longitude | Sample date | Ammonia | Chlorine | Conductivity | Salinity | E. coli or
Enterococcus | Surfactants | Water
Temp | Pollutant of concern | |---|-------------------------|-------------|---------|----------|--------------|----------|----------------------------|-------------|---------------|----------------------| | System Vulnerability Factors are currently under investigation, and will be added to the next annual report. Refer to Section 1: Catchment Investigation Data, 3.1 System Vulnerability Factor Summary for more information. | | | | | | | | | | | # **1. Catchment Investigation data** (Appendix B (A)(7)(e) / page 9) For details on this requirement, visit www.nemo.uconn.edu/ms4/tasks/monitoring.htm. Refer to the green column of the Monitoring comparison chart and the IDDE catchment investigation flowchart. #### 3.1 System Vulnerability Factor Summary For those catchments being investigated for illicit discharges (i.e. categorized as high priority, low priority, or problem) document the presence or absence of System Vulnerability Factors (SVF). If present, report which SVF's were identified. An example is provided below. | Outfall Receiving Water System Vulnerability Factors | | |--|--| |--|--| The Town of Wallingford's sanitary sewer is currently managed by the Town of Walllingford's Water Pollution Control Authority (WPCA). The storm sewer and sanitary sewer have historically been separate, and remain so in the present day. Therefore, SVFs 4, 5, 6, 7, 8, and 9 are not applicable to the Town. Other SVFs are currently under investigation, and will be updated in the next annual report. These investigations include coordination between the WPCF, as well as the (FVDH). #### Where SVFs are: - 1. History of SSOs, including, but not limited to, those resulting from wet weather, high water table, or fat/oil/grease blockages. - 2. Sewer pump/lift stations, siphons, or known sanitary sewer restrictions where power/equipment failures or blockages could readily result in SSOs. - 3. Inadequate sanitary sewer level of service (LOS) resulting in regular surcharging, customer back-ups, or frequent customer complaints. - 4. Common or twin-invert manholes serving storm and sanitary sewer alignments. - 5. Common trench construction serving both storm and sanitary sewer alignments. - 6. Crossings of storm and sanitary sewer alignments. - 7. Sanitary sewer alignments known or suspected to have been constructed with an underdrain system; - 8. Sanitary sewer infrastructure defects such as leaking service laterals, cracked, broken, or offset sanitary infrastructure, directly piped connections between storm drain and sanitary sewer infrastructure, or other vulnerability factors identified through Inflow/Infiltration Analyses, Sanitary Sewer Evaluation Surveys, or other infrastructure investigations. - 9. Areas formerly served by combined sewer systems. - 10. Any sanitary sewer and storm drain infrastructure greater than 40 years old in medium and densely developed areas. - 11. Widespread code-required septic system upgrades required at property transfers (indicative of inadequate soils, water table separation, or other physical constraints of the area rather that poor owner maintenance). - 12. History of multiple local health department or sanitarian actions addressing widespread septic system failures (indicative of inadequate soils, water table separation, or other physical constraints of the area rather that poor owner maintenance). ## 3.2 Key junction manhole dry weather screening and sampling data You may also attach an excel spreadsheet with the same data rather than copying it to this table. If you do attach a spreadsheet, please write "See Attachment" below. | Key Junction
Manhole
ID | Latitude /
Longitude | Screening /
Sample date | Visual/ olfactory
evidence of illicit
discharge | Ammonia | Chlorine | Surfactants | |-------------------------------|-------------------------|----------------------------|---|---------|----------|-------------| | | | | | | | | | | | | | | | | ## 3.3 Wet weather investigation outfall sampling data You may also attach an excel spreadsheet with the same data rather than copying it to this table. If you do attach a spreadsheet, please write "See Attachment" below. | Outfall
ID | Latitude /
Longitude | Sample date | Ammonia | Chlorine | Surfactants | |---------------|-------------------------|-------------|---------|----------|-------------| | | | | | | | | | | | | | | ## 3.4 Data for each illicit discharge source confirmed through the catchment investigation
procedure | Discharge
location | Source
location | Discharge description | Method of discovery | Date of discovery | Date of elimination | Mitigation or enforcement action | Estimated volume of flow removed | |-----------------------|--------------------|--------------------------------|--------------------------|-------------------|---------------------|----------------------------------|----------------------------------| | QR-11 | Senior
Center | Murky, iridescent | Dry Weather
Screening | 5-17-2019 | N/A | N/A | N/A | | OF-64 | | Clear, no odor, slight trickle | Dry Weather
Screening | 10-20-
2021 | N/A | None. | N/A | ## Part IV: Certification "I have personally examined and am familiar with the information submitted in this document and all attachments thereto, and I certify that, based on reasonable investigation, including my inquiry of those individuals responsible for obtaining the information, the submitted information is true, accurate and complete to the best of my knowledge and belief. I understand that a false statement made in this document or its attachments may be punishable as a criminal offense, in accordance with Section 22a-6 of the Connecticut General Statutes, pursuant to Section 53a-157b of the Connecticut General Statutes, and in accordance with any other applicable statute." | Chief Elected Official or Principal Executive Officer | Document Prepared by | | |--|---|--| | Print name: Robert Baltramaitis, P.E. Wallingford Department of Public Works | Print name: Kay Lehoux, Environmental Scientist | | | Signature / Date: 4(11/22 | Signature / Date: Augusture 4/1/2022 | | | Email: publicworks@wallingfordct.gov | Email: kay.lehoux@oneatlas.com | | SUBMITTED BY: ATC GROUP SERVICES, LLC SUBMITTED TIME: OCTOBER 20, 2021 9:01 AM OUTFALL ID: OF-270 **INSPECTION DATE: OCTOBER 20, 2021** | Material | | |--------------------|--| | Subtype | | | Diameter | | | Condition | | | Erosion
Control | | #### Notes Could not locate outfall. Outfall is in the discharge area of a scrapyard. Several swales that conjoin to one larger trench are in the approximate location of outfall. Trenches are highly eroded with rip rap lining the bottom SUBMITTED BY: ATC GROUP SERVICES, LLC SUBMITTED TIME: OCTOBER 20, 2021 2:00 PM OUTFALL ID: OF-92 INSPECTION DATE: OCTOBER 20, 2021 | Material | Plastic | |--------------------|------------| | Subtype | Flared End | | Diameter | 15" | | Condition | Good | | Erosion
Control | Yes | ### Notes Slightly overgrown, standing water in pipe, cut down debris thrown on top of outfall. SUBMITTED BY: ATC GROUP SERVICES, LLC SUBMITTED TIME: OCTOBER 20, 2021 1:54 PM OUTFALL ID: OF-66 INSPECTION DATE: OCTOBER 20, 2021 | Material | Plastic | |--------------------|-----------| | Subtype | 1 | | Diameter | 6" | | Condition | Excellent | | Erosion
Control | Yes | #### Notes Outfall pipe is suspended but drainage lands on rip rap, little to no erosion, no trash or other debris. SUBMITTED BY: ATC GROUP SERVICES, LLC SUBMITTED TIME: OCTOBER 20, 2021 1:47 PM OUTFALL ID: OF-67 INSPECTION DATE: OCTOBER 20, 2021 | Material | Plastic | |--------------------|------------| | Subtype | Flared End | | Diameter | 15" | | Condition | Excellent | | Erosion
Control | Yes | ### Notes Drains into a closed depression, minimal erosion, some rip rap Outfall: SUBMITTED BY: ATC GROUP SERVICES, LLC SUBMITTED TIME: OCTOBER 20, 2021 1:36 PM OUTFALL ID: OF-68 INSPECTION DATE: OCTOBER 20, 2021 | Material | Concrete | |--------------------|----------| | Subtype | | | Diameter | 12" | | Condition | Good | | Erosion
Control | Unknown | #### Notes Outfall goes directly into river, submerged under water, could not determine discharge or condition of opening. SUBMITTED BY: ATC GROUP SERVICES, LLC SUBMITTED TIME: OCTOBER 20, 2021 1:22 PM OUTFALL ID: OF-73 INSPECTION DATE: OCTOBER 20, 2021 | Material | Concrete | |--------------------|------------| | Subtype | Flared End | | Diameter | | | Condition | Poor | | Erosion
Control | No | #### Notes Completely blocked and covered by debris, some rip rap in discharge channel. SUBMITTED BY: ATC GROUP SERVICES, LLC SUBMITTED TIME: OCTOBER 20, 2021 1:21 PM OUTFALL ID: OF-72 INSPECTION DATE: OCTOBER 20, 2021 | Material | Plastic | |--------------------|---------| | Subtype | -1 | | Diameter | 15" | | Condition | Good | | Erosion
Control | Yes | ### Notes Slightly overgrown, trash present in discharge channel. SUBMITTED BY: ATC GROUP SERVICES, LLC SUBMITTED TIME: OCTOBER 20, 2021 1:09 PM OUTFALL ID: OF-71 INSPECTION DATE: OCTOBER 20, 2021 | Material | Plastic | |--------------------|------------| | Subtype | Flared End | | Diameter | 15" | | Condition | Good | | Erosion
Control | Yes | ### Notes Metal flared end on plastic, overgrown, some rip rap in discharge channel, minimal erosion SUBMITTED BY: ATC GROUP SERVICES, LLC SUBMITTED TIME: OCTOBER 20, 2021 1:05 PM OUTFALL ID: OF-70 INSPECTION DATE: OCTOBER 20, 2021 | Material | Metal | |--------------------|-----------| | Subtype | 1 | | Diameter | 36" | | Condition | Excellent | | Erosion
Control | No | ### Notes Metal pipe, drains directly into flowing part of river. SUBMITTED BY: ATC GROUP SERVICES, LLC SUBMITTED TIME: OCTOBER 20, 2021 1:03 PM OUTFALL ID: OF-69 INSPECTION DATE: OCTOBER 20, 2021 | Material | Metal | |--------------------|-------| | Subtype | | | Diameter | 24" | | Condition | Good | | Erosion
Control | No | ### Notes Metal pipe, discharging directly into inlet stream, film on top of water at outfall, trash all along inlet stream. SUBMITTED BY: ATC GROUP SERVICES, LLC SUBMITTED TIME: OCTOBER 20, 2021 12:42 PM OUTFALL ID: OF-59 INSPECTION DATE: OCTOBER 20, 2021 | Material | Concrete | |--------------------|------------| | Subtype | Flared End | | Diameter | 24" | | Condition | Good | | Erosion
Control | Yes | ## Notes Debris is opening of pipe likely to block water flow, rip rap in channel leading to river. Oily sheen on water at end of channel 290 Roberts Street, Suite 301 East Hartford, CT 06108 Telephone 860-282-9924 Fax 737-207-8276 www.oneatlas.com # WALLINGFORD DRY WEATHER INSPECTIONS SUBMITTED BY: ATC GROUP SERVICES, LLC SUBMITTED TIME: OCTOBER 20, 2021 12:25 PM OUTFALL ID: INSPECTION DATE: | Material | | |--------------------|---| | Subtype | | | Diameter | " | | Condition | | | Erosion
Control | | Notes Could not locate outfall SUBMITTED BY: ATC GROUP SERVICES, LLC SUBMITTED TIME: OCTOBER 20, 2021 12:08 PM OUTFALL ID: OF-65 INSPECTION DATE: OCTOBER 20, 2021 | Material | Concrete | |--------------------|----------| | Subtype | Other | | Diameter | 12" | | Condition | Good | | Erosion
Control | Yes | ### Notes Eroded sediment in front of outfall has caused a void where water goes rather than flow over rip rap and into river. SUBMITTED BY: ATC GROUP SERVICES, LLC SUBMITTED TIME: OCTOBER 20, 2021 12:05 PM OUTFALL ID: OF-64 INSPECTION DATE: OCTOBER 20, 2021 | Material | Concrete | |--------------------|-----------| | Subtype | Other | | Diameter | 36" | | Condition | Excellent | | Erosion
Control | No | ### Notes Drains directly into river. Discharge present but was determined to be groundwater, clear and odorless. SUBMITTED BY: ATC GROUP SERVICES, LLC SUBMITTED TIME: OCTOBER 20, 2021 12:03 PM OUTFALL ID: OF-63 INSPECTION DATE: OCTOBER 20, 2021 | Material | Concrete | |--------------------|------------| | Subtype | Flared End | | Diameter | 12" | | Condition | Fair | | Erosion
Control | No | ### Notes Eroded depression in front of outfall preventing water from flowing downhill, causing ponding. Rip rap present on hillside down to river. 290 Roberts Street, Suite 301 East Hartford, CT 06108 Telephone 860-282-9924 Fax 737-207-8276 www.oneatlas.com # WALLINGFORD DRY WEATHER INSPECTIONS SUBMITTED BY: ATC GROUP SERVICES, LLC SUBMITTED TIME: OCTOBER 20, 2021 11:33 AM OUTFALL ID: OF-255 INSPECTION DATE: OCTOBER 20, 2021 | Material | | |--------------------|--| | Subtype | | | Diameter | | | Condition | | | Erosion
Control | | #### Notes Could not locate, dense vegetation, significant amounts of rip rap along hillside down to river SUBMITTED BY: ATC GROUP SERVICES, LLC SUBMITTED TIME: OCTOBER 20, 2021 11:04 AM OUTFALL ID: OF-249 INSPECTION DATE: OCTOBER 20, 2021 | Material | Concrete | |--------------------|------------| | Subtype | Flared End | | Diameter | 24" | | Condition | Excellent | | Erosion
Control | Yes | ### Notes Excellent condition, no erosion trash or sediment. Rip rap whole way down to river Outfall: SUBMITTED BY: ATC GROUP SERVICES, LLC SUBMITTED TIME: OCTOBER 20, 2021 10:56 AM OUTFALL ID: OF-246 INSPECTION DATE: OCTOBER 20, 2021 | Material | Plastic | |--------------------|------------| | Subtype | Flared End | | Diameter | 24" | | Condition | Good | | Erosion
Control | Yes | #### Notes Sediment accumulation in base and mouth of pipe, trash present, moderate vegetation, rip rap lining drainage area. SUBMITTED BY: ATC GROUP SERVICES, LLC SUBMITTED TIME: OCTOBER 20, 2021 10:47 AM OUTFALL ID: OF-247 INSPECTION DATE: OCTOBER 20, 2021 | Material | Precast | |--------------------|------------| | Subtype | Flared End | | Diameter | 36" | | Condition | Excellent | | Erosion
Control | Yes | #### Notes Excellent condition, drains directly into stream, located directly across stream from OF-248, SUBMITTED BY: ATC GROUP SERVICES, LLC SUBMITTED TIME: OCTOBER 20, 2021 10:41 AM OUTFALL ID: OF-248 INSPECTION DATE: OCTOBER 20, 2021 | Material | Precast | |--------------------|-----------| | Subtype | | | Diameter | 24" | | Condition | Excellent | | Erosion
Control | Yes | #### Notes Excellent condition, located next to gas station, no erosion or trash, drains directly into river. SUBMITTED BY: ATC GROUP SERVICES, LLC SUBMITTED TIME: OCTOBER 20, 2021 10:33 AM OUTFALL ID: OF-244 INSPECTION DATE: OCTOBER 20, 2021 | Material |
Plastic | |--------------------|---------| | Subtype | | | Diameter | 6" | | Condition | Good | | Erosion
Control | No | #### Notes Plastic pipe, water falls out onto exposed soil and has moderately eroded discharge channel, some trash present, moderate vegetation, located behind gas station and liquor store. SUBMITTED BY: ATC GROUP SERVICES, LLC SUBMITTED TIME: OCTOBER 20, 2021 10:27 AM OUTFALL ID: OF-245 **INSPECTION DATE: OCTOBER 20, 2021** | Material | Precast | |--------------------|---------| | Subtype | | | Diameter | 12" | | Condition | Good | | Erosion
Control | No | ### Notes Outfall pipe in excellent condition, trash present in discharge channel, located behind gas station and liquor store. No erosion controls in place, channel is moderately eroded down to the river. SUBMITTED BY: ATC GROUP SERVICES, LLC SUBMITTED TIME: OCTOBER 20, 2021 10:14 AM OUTFALL ID: OF-54 INSPECTION DATE: OCTOBER 20, 2021 | Material | Precast | |--------------------|-----------| | Subtype | Other | | Diameter | 15" | | Condition | Excellent | | Erosion
Control | Yes | #### Notes Excellent condition, minimal vegetation, rip rap leading down to river, no erosion. SUBMITTED BY: ATC GROUP SERVICES, LLC SUBMITTED TIME: OCTOBER 20, 2021 9:38 AM OUTFALL ID: OF-269 INSPECTION DATE: OCTOBER 20, 2021 | Material | | |--------------------|------| | Subtype | | | Diameter | | | Condition | Poor | | Erosion
Control | Yes | ### **Notes** Outfall is completely blocked, cannot determine material or diameter, by overlying asphalt collapse. Standing water present, trash also present around outfall. Rip rap places along discharge channel leading to river, minimal channel erosion. # Town of Wallingford MS4 Interconnection Inspections | Interconnection ID | MS4 | Inspection Date | Material | Condition | Erosion
Control | Notes | Discharge | Longitute | Latitude | |--------------------|-------------------|-----------------|----------|-----------|--------------------|---|-----------|--------------|-------------| | IC-21 | СТДОТ | 5/17/2021 | Unk. | Good | Good | Good condition, no
discharge. Some
trash/debris present. | No | -72.83775044 | 41.45765206 | | IC-20 | СТДОТ | 5/17/2021 | Unk. | Good | Fair | Some grass clippings in CB. | No | -72.82897425 | 41.47793953 | | IC-13 | СТДОТ | 6/7/2021 | Concrete | Good | Excellent | Good condition, no discharge. | No | -72.80576778 | 41.48488412 | | IC-14 | СТДОТ | 6/7/2021 | Concrete | Good | Good | Good condition, no discharge. | No | -72.80165863 | 41.48300739 | | IC-16 | СТДОТ | 6/7/2021 | Unk. | Poor | Poor | Last 2 CBs on Thorpe
Ave completely silted
in. No interconnection
possible. | No | -72.76756239 | 41.47972799 | | IC-17 | СТДОТ | 6/7/2021 | Concrete | Good | Good | Good condition, no discharge. | No | -72.76628566 | 41.478884 | | IC-18 | СТДОТ | 6/7/2021 | Concrete | Good | Good | Some trash around CB. | No | -72.76505185 | 41.47676990 | | IC-15 | СТДОТ | 6/7/2021 | Unk. | Good | Fair | Trash/debris around
CB. | No | -72.78639418 | 41.4834052 | | IC-11 | СТДОТ | 5/17/2021 | Unk. | Good | Good | Good condition, no discharge. | No | -72.81997544 | 41.4914221 | | IC-10 | СТДОТ | 5/17/2021 | Unk. | Poor | Poor | CB heavily silted in; vegetation growing inside CB | No | -72.82250208 | 41.49196862 | | IC-9 | СТДОТ | 5/17/2021 | Unk. | Good | Good | Good condition, no | No | -72.82322628 | 41.49205702 | | IC-8 | СТДОТ | 5/17/2021 | Unk. | Excellent | Good | discharge. Good condition, no discharge. | No | -72.82421333 | 41.49213738 | | IC-7 | СТДОТ | 5/17/2021 | Unk. | Good | Good | Good condition, no discharge. | No | -72.82724959 | 41.49229409 | | IC-6 | СТДОТ | 5/17/2021 | Unk. | Good | Fair | Some sediment in CB. | No | -72.82860142 | 41.49257536 | | IC-5 | СТДОТ | 5/17/2021 | Unk. | | | Unable to open
manhole. | | -72.82965821 | 41.4926476 | | IC-4 | СТДОТ | 5/17/2021 | Unk. | Good | Poor | Slight discharge coming
from W, along state
road, not MS4. Next in-
line MS4 CB heavily
silted in. | Yes | -72.83134801 | 41.49252313 | | IC-3 | СТДОТ | 5/17/2021 | Unk. | Good | Good | Good condition, no discharge. | No | -72.83499581 | 41.49292896 | | IC-1 | СТДОТ | 5/17/2021 | Unk. | Good | Good | Good condition, no discharge. | No | -72.84848732 | 41.49352364 | | IC-30 | Cheshire/CTDOT | 5/17/2021 | Unk. | Fair | Fair | CB partially filled with leaves/sediment. | No | -72.86538524 | 41.4800776 | | IC-31 | Cheshire/CTDOT | 5/17/2021 | Unk. | Fair | Fair | Moderate amount of sediment in CB. | No | -72.87481588 | 41.4652219 | | IC-32 | Hamden/CTDOT | 5/17/2021 | Unk. | Good | Fair | Some sediment in CB. | No | -72.88678927 | 41.4480467 | | IC-33 | North Haven/CTDOT | 5/17/2021 | Unk. | Excellent | Good | Good condition, no discharge. | No | -72.82743734 | 41.4015803 | | IC-34 | North Haven/CTDOT | 5/17/2021 | Unk. | Good | Good | Good condition, no
discharge. | No | -72.82748026 | 41.4006226 | | IC-35 | North Haven/CTDOT | 5/17/2021 | Unk. | Excellent | Good | Good condition, no discharge. | No | -72.82757682 | 41.3984416 | | IC-36 | Northford/CTDOT | 5/17/2021 | Unk. | Excellent | Good | Good condition, no discharge. | No | -72.7823655 | 41.4113333 | | IC-24 | СТДОТ | 5/17/2021 | Unk. | Excellent | Good | Good condition, no discharge. | No | -72.80277175 | 41.42674036 | | IC-23 | СТДОТ | 5/17/2021 | Unk. | Fair | Good | CB partially filled with sediment/leaf debris. | No | -72.80481023 | 41.4406156 | | IC-22 | СТДОТ | 5/17/2021 | Unk. | Fair | Fair | CB covered with leaf debris | No | -72.80537886 | 41.4482839 | | IC-19 | СТВОТ | 6/7/2021 | Unk. | Excellent | Good | Inspection completed
at last in-line CB on
Tammy Hill Rd. Good
condition, no discharge.
Homeowner had placed
garbage cans directly
on CB. | No | -72.75116873 | 41.47071684 | | IC-25 | СТДОТ | 5/17/2021 | Unk. | Good | Good | Good condition, no discharge. | No | -72.80930829 | 41.49615546 | | IC-26 | СТДОТ | 5/17/2021 | Unk. | Good | Good | Good condition, no discharge. | No | -72.80940485 | 41.4956974 | | IC-27 | СТДОТ | 5/17/2021 | Unk. | Fair | Fair | Trash/debris in area of CB. | No | -72.80920101 | 41.49086762 | | IC-12 | СТДОТ | 5/17/2021 | Unk. | Good | Good | Good condition, no discharge. | No | -72.81129313 | 41.4882717 | | IC-29 | Mericden/CTDOT | 6/7/2021 | Concrete | Fair | Good | Good condition, no | No | -72.76441933 | 41.4969201 | ATC Group Services LLC 290 Roberts Street, Suite 301 East Hartford, CT 06108 Client Name: Town of Wallingford Site Location: Town of Wallingford Interconnection Screenings **Date:** *May 17 & June 7, 2021* ## Interconnection ID IC-1 ## Interconnection ID ATC Group Services LLC 290 Roberts Street, Suite 301 East Hartford, CT 06108 Client Name: Town of Wallingford Site Location: Town of Wallingford Interconnection Screenings May 17 & June 7, 2021 ### Interconnection IC-4 #### Interconnection ID ATC Group Services LLC 290 Roberts Street, Suite 301 East Hartford, CT 06108 Client Name: Town of Wallingford Site Location: Town of Wallingford Interconnection Screenings **Date:** *May 17 & June 7, 2021* ### Interconnection IC-7 #### Interconnection ID ATC Group Services LLC 290 Roberts Street, Suite 301 East Hartford, CT 06108 Client Name: Town of Wallingford Site Location: Town of Wallingford Interconnection Screenings May 17 & June 7, 2021 ### Interconnection IC-9 ## Interconnection ID ATC Group Services LLC 290 Roberts Street, Suite 301 East Hartford, CT 06108 Client Name: Town of Wallingford Site Location: Town of Wallingford Interconnection Screenings May 17 & June 7, 2021 ### Interconnection IC-12 #### Interconnection ATC Group Services LLC 290 Roberts Street, Suite 301 East Hartford, CT 06108 Client Name: Town of Wallingford **Site Location:** Town of Wallingford Interconnection Screenings May 17 & June 7, 2021 ### Interconnection IC-14 #### Interconnection ID IC-15 ATC Group Services LLC 290 Roberts Street, Suite 301 East Hartford, CT 06108 Client Name: Town of Wallingford Site Location: Town of Wallingford Interconnection Screenings **Date:** *May 17 & June 7, 2021* #### Interconnection IC-16 ## Interconnection ID ATC Group Services LLC 290 Roberts Street, Suite 301 East Hartford, CT 06108 Client Name: Town of Wallingford Site Location: Town of Wallingford Interconnection Screenings May 17 & June 7, 2021 ### Interconnection IC-18 ### Interconnection ID ATC Group Services LLC 290 Roberts Street, Suite 301 East Hartford, CT 06108 Client Name: Town of Wallingford Site Location: Town of Wallingford Interconnection Screenings **Date:** *May 17 & June 7, 2021* ### Interconnection IC-20 # Interconnection ID ATC Group Services LLC 290 Roberts Street, Suite 301 East Hartford, CT 06108 Client Name: Town of Wallingford Site Location: Town of Wallingford Interconnection Screenings May 17 & June 7, 2021 ### Interconnection IC-22 ### Interconnection ID ATC Group Services LLC 290 Roberts Street, Suite 301 East Hartford, CT 06108 Client Name: Town of Wallingford Site Location: Town of Wallingford Interconnection Screenings May 17 & June 7, 2021 ### Interconnection IC-24 ## Interconnection ID ATC Group Services LLC 290 Roberts Street, Suite 301 East Hartford, CT 06108 Client Name: Town of Wallingford Site Location: Town of Wallingford Interconnection Screenings May 17 & June 7, 2021 #### Interconnection IC-26 #### Interconnection ATC Group Services LLC 290 Roberts Street, Suite 301 East Hartford, CT 06108 Client Name: Town of Wallingford Site Location: Town of Wallingford Interconnection Screenings May 17 & June 7, 2021 ### Interconnection IC-29 #### Interconnection ID ATC Group Services LLC 290 Roberts Street, Suite 301 East Hartford, CT 06108 Client Name: Town of Wallingford Site Location: Town of Wallingford Interconnection Screenings May 17 & June 7, 2021 ### Interconnection IC-32 ####
Interconnection ID ATC Group Services LLC 290 Roberts Street, Suite 301 East Hartford, CT 06108 Client Name: Town of Wallingford Site Location: Town of Wallingford Interconnection Screenings **Date:** *May 17 & June 7, 2021* ### Interconnection IC-34 # Interconnection ID ATC Group Services LLC 290 Roberts Street, Suite 301 East Hartford, CT 06108 Client Name: Town of Wallingford Site Location: Town of Wallingford Interconnection Screenings May 17 & June 7, 2021 ### Interconnection # **ATTACHMENT II –Wet Weather Inspections** | | | | | Other
Parameters | Bacte | rial | |------------|--------------------|-----------|------------------|---------------------|----------------------|--------------------| | Outfall ID | Inspection
Date | Condition | Discharge Visual | Phosphorus | Escheriachia
Coli | Total
Coliforms | | | | | | (mg/L) | MPN/10 | 00mL | | QR-6 | 9/1/21 | Excellent | | 0.171 | >24,200 | >24,200 | | QR-8 | 9/1/21 | Good | | 0.236 | >24,200 | >24,200 | | QR-10 | 9/1/21 | Good | | 0.182 | 2,910 | >24,200 | | QR-11 | 9/1/21 | Excellent | | 0.053 | 816 | >24,200 | | QR-17 | 9/1/21 | Good | | 0.458 | >24,200 | >24,200 | | AB-1 | 9/1/21 | Good | | | 670 | >24,200 | | AB-2 | 9/1/21 | Good | 14 | | 20 | >24,200 | | AB-3 | 9/1/21 | Good | | | 3,130 | >24,200 | | AB-4 | 9/1/21 | Good | | | 1,270 | >24,200 | | MR-1 | 9/1/21 | Good | | | 11,200 | >24,200 | | MR-2 | 9/1/21 | Good | | | 3,870 | >24,200 | | 1 | i | i | | l | | <u> </u> | - Notes: * All highlighted bacterial concentrations are required for follow-up investigations at *Highlighting is based on the following criteria; 1. E. Coli >235/100mL for Swimming Areas, and >410 col/100mL for all others. 2. Total Coliform >500 col/100mL 3. Fecal Coliform >31 col/100 mL for Class SA and >260 col/100mL for Class SB 4. Enterococci >104 col/100mL for Swimming Areas and >500 col/100mL for all others. | Catchment ID | Outfalls
Included | Receiving Water(s) | Previous
Screening
Results Indicate
Likely Sewer
Input? ¹ | Discharging to
Area of Concern
to Public Health? | Frequency of Past
Discharge
Complaints | Receiving
Water Quality ³ | Density of
Generating Sites
4 | Age of
Development/
Infrastructure ⁵ | Historic
Combined
Sewers or
Septic? ⁶ | Aging
Septic? ⁷ | Culverted
Streams? ⁸ | Additional Characteristics | Sewer Repair
Nearby? | Urbanized Area | DCIA >11% | Impaired Waterbody | | Priority Ranking
0-5: Low Priority | |---------------|----------------------|-------------------------------------|--|--|--|---|---|---|---|---------------------------------|------------------------------------|--|------------------------------|------------------|-----------------------------------|--------------------|-------|---------------------------------------| | Infor | mation Source | | Catchment inspections and sample results | GIS Maps | Municipal Staff | Impaired
Waters List | Land Use/GIS
Maps, Aerial
Photography | Land Use
Information, Visual
Observation | Municipal Staff,
GIS Maps | Land Use,
Municipal
Staff | GIS and Storm
System Maps | Other | Municipal Staff, GIS
Maps | CLEAR | Nathan L Jacobson &
Associates | CLEAR | Score | 6-9: Problem
≥: 10 high Priority | | Scc | oring Criteria | | Yes = 3 (Problem
Catchment)
No = 0 | Yes = 3
No = 0 | Frequent = 3 Occasional = 2 None = 0 | Poor = 3 Fair = 2 Good = 0 | High = 3 Medium = 2 Low = 1 | High = 3 Medium = 2 Low = 1 | Yes = 3
No = 0 | Yes = 3
No = 0 | Yes = 3
No = 0 | Description | Yes=2
No=0 | Yes =1
No = 0 | Yes =1
No = 0 | Yes =1
No = 0 | | | | 4606-00-1 | 0 | None | | 0 | | 0 | 1 | 1 | 0 | | 0 | Wooded | | 0 | 0 | 0 | 2 | Low Priority | | 4606-01-1 | 0 | None | | 0 | | 0 | 1 | 1 | 0 | | 0 | Wooded | | 0 | 0 | 0 | 2 | Low Priority | | 4606-02-1 | 0 | Unnamed Stream | | 0 | | 0 | 1 | 1 | 0 | | 0 | Wooded | | 0 | 0 | 0 | 2 | Low Priority | | 4607-10-1-L1 | 0 | None | | 0 | | 0 | 1 | 1 | 0 | | 0 | Wooded | | 0 | 0 | 0 | 2 | Low Priority | | 5112-00-2-L1 | 2 | Unnamed Stream | | 0 | | 0 | 1 | 2 | 0 | | 3 | Wooded, some residential
housing, light agricultural
land | | 1 | 0 | 0 | 7 | Problem | | 5112-02-1 | 4 | Unnamed Stream | | 0 | | 0 | 1 | 2 | 0 | | 3 | Wooded, cleared land, light residential housing | | 0 | 0 | 0 | 6 | Problem | | 5112-02-1-D1 | 0 | None | | 0 | | 0 | 1 | 2 | 0 | | 0 | Wooded, agricultural land | | 0 | 0 | 0 | 3 | Low Priority | | 5112-02-1-L1 | 0 | Unnamed Stream | | 0 | | 0 | 1 | 1 | 0 | | 0 | Wooded and Pitsapaug
Pond | | 0 | 0 | 0 | 2 | Low Priority | | 5112-03-1 | 1 | Unnamed Stream | | 0 | | 0 | 1 | 2 | 0 | | 3 | Wooded, cleared land,
some agricultural land and
residential housing | | 0 | 0 | 0 | 6 | Problem | | 5200-00-4-L3 | 49 | Quinnipiac River,
Community Lake | | 0 | | 3 | 3 | 2 | 0 | | 0 | Wooded, some commercial and residential housing | | 1 | 1 | 1 | 11 | High Priority | | 5200-00-4-R10 | 45 | Quinnipiac River | | 0 | | 2 | 3 | 2 | 0 | | 3 | Commercial development,
some residential housing
and wooded areas | | 1 | 1 | 1 | 13 | High Priority | | 5200-00-4-R11 | 20 | Quinnipiac River | | 0 | | 2 | 2 | 2 | 0 | | 0 | Wooded and commercial, some residential housing | | 1 | 1 | 1 | 9 | Problem | | 5200-00-4-R12 | 27 | Quinnipiac River | | 0 | | 2 | 2 | 1 | 0 | | 3 | Wooded, some agricultural
land and commercial, light
residential | | 1 | 1 | 1 | 11 | High Priority | | Catchment ID | Outfalls
Included | Receiving Water(s) | Previous
Screening
Results Indicate
Likely Sewer
Input? ¹ | Discharging to
Area of Concern
to Public Health? | Frequency of Past
Discharge
Complaints | | Density of
Generating Sites
4 | Age of
Development/
Infrastructure ⁵ | Historic
Combined
Sewers or
Septic? ⁶ | Aging
Septic? ⁷ | Culverted
Streams? ⁸ | Additional Characteristics | Sewer Repair
Nearby? | Urbanized Area | DCIA >11% | Impaired Waterbody | | Priority Ranking | |--------------|----------------------|---|--|--|--|------------------------------|---|---|---|---------------------------------|------------------------------------|---|------------------------------|------------------|-----------------------------------|--------------------|-------|--| | Infor | mation Source | | Catchment inspections and sample results | GIS Maps | Municipal Staff | Impaired
Waters List | Land Use/GIS
Maps, Aerial
Photography | Land Use
Information, Visual
Observation | Municipal Staff,
GIS Maps | Land Use,
Municipal
Staff | GIS and Storm
System Maps | Other | Municipal Staff, GIS
Maps | CLEAR | Nathan L Jacobson &
Associates | CLEAR | Score | 0-5: Low Priority
6-9: Problem
≥: 10 high Priority | | Sco | oring Criteria | | Yes = 3 (Problem
Catchment)
No = 0 | Yes = 3
No = 0 | Frequent = 3 Occasional = 2 None = 0 | Poor = 3 Fair = 2 Good = 0 | High = 3 Medium = 2 Low = 1 | High = 3
Medium = 2
Low = 1 | Yes = 3
No = 0 | Yes = 3
No = 0 | Yes = 3
No = 0 | Description | Yes=2
No=0 | Yes =1
No = 0 | Yes =1
No = 0 | Yes =1
No = 0 | | | | 5200-00-4-R7 | 84 | Quinnipiac River | | 3 | | 2 | 2 | 2 | 0 | | 3 | Commercial, some
residential housing, light
wooded areas | | 1 | 1 | 1 | 15 | High Priority | | 5200-00-4-R8 | 81 | Quinnipiac River | | 3 | | 2 | 3 | 2 | 0 | | 0 | Commercial and residential
housing, light wooded
areas | | 1 | 1 | 1 | 13 | High Priority | | 5200-10-1 | 14 | Meetinghouse Brook | | 3 | | 0 | 2 | 1 | 0 | | 3 | Residential housing, some commercial and wooded areas | | 1 | 1 | 0 | 11 | High Priority | | 5200-10-2-R1 | 69 | Meetinghouse Brook | | 3 | | 0 | 3 | 2 | 0 | | 3 | Commercial, light residential housing and wooded, highway | | 1 | 1 | 0 | 13 | High Priority | | 5200-11-1 | 15 | Spruce Glen Brook | | 3 | | 0 | 2 | 2 | 0 | | 3 | Residential housing, some
wooded, light agricultural
land, highway | | 1 | 0 | 0 | 11 | High Priority | | 5200-12-1 | 2 | Unnamed Stream | | 3 | | 0 | 2 | 2 | 0 | | 3 | Commercial, some wooded | | 1 | 1 | 0 | 12 | High Priority | | 5200-12-1-L1 | 49 | Unnamed Stream | | 3 | | 0 | 2 | 2 | 0 | | 3 | Wooded, some residential
housing, light commercial
and athletic fields | | 1 | 1 | 0 | 12 | High Priority | | 5200-13-1 | 62 | Padens Brook | | 3 | | 2 | 3 | 2 | 0 | | 3 | Commercial, some
residential housing, light
wooded and agricultural
land | | 1 | 1 | 1 | 16 | High Priority | | 5200-14-1 | 38 | Unnamed Pond | | 0 | | 0 | 1 | 1 | 0 | | 0 | Pond, light wooded and residential | | 1 | 1 | 0 | 4 | Low Priority | | 5200-14-1-L1 | 3 | Unnamed Stream | | 0 | | 0 | 2 | 2 | 0 | | 3 | Some wooded and residential housing | | 1 | 1 | 0 | 9 | Problem | | 5200-15-1 | 34 | Unnamed Streams,
Peanuts Pond, Farms
Pond, Fergusons Pond | | 0 | | 0 | 3 | 2 | 0 | | 3 | Residential housing, some agricultural land, light wooded | | 1 | 0 | 0 | 9 | Problem | | 5200-16-1 | 0 | None | | 0 | | 0 | 1 | 1 | 0 | | 0 | Wooded | | 0 | 0 | 0 | 2 | Low
Priority | | 5200-17-1 | 0 | None | | 0 | | 0 | 1 | 2 | 0 | | 0 | Light residential housing | | 1 | 0 | 0 | 4 | Low Priority | | 5200-19-1-L1 | 0 | None | | 0 | | 0 | 1 | 2 | 0 | | 0 | Light residential housing | | 1 | 1 | 0 | 5 | Low Priority | | 5204-00-2-L1 | 10 | Broad Brook | | 0 | | 0 | 2 | 2 | 0 | | 0 | Wooded, some residential housing | | 1 | 0 | 0 | 5 | Low Priority | | 5204-01-1 | 0 | Broad Brook | | 0 | | 0 | 1 | 1 | 0 | | 0 | Wooded | | 1 | 0 | 0 | 3 | Low Priority | | 5204-02-1 | 4 | Broad Brook | | 0 | | 0 | 2 | 2 | 0 | | 0 | Wooded, some residential housing | | 1 | 0 | 0 | 5 | Low Priority | | Catchment ID | Outfalls
Included | Receiving Water(s) | Previous Screening Results Indicate Likely Sewer Input? 1 Catchment inspections and | Discharging to
Area of Concern
to Public Health?
2 | Frequency of Past Discharge Complaints Municipal Staff | Water Quality ³ | Density of
Generating Sites
4
Land Use/GIS
Maps, Aerial | Age of Development/ Infrastructure 5 Land Use Information, Visual | Historic
Combined
Sewers or
Septic? ⁶
Municipal Staff,
GIS Maps | Aging
Septic? ⁷
Land Use,
Municipal | Culverted
Streams? ⁸
GIS and Storm
System Maps | Additional Characteristics Other | Sewer Repair
Nearby?
Municipal Staff, GIS | Urbanized Area CLEAR | DCIA >11% Nathan L Jacobson & | Impaired Waterbody | Score | Priority Ranking
0-5: Low Priority
6-9: Problem
≥: 10 high Priority | |--------------|----------------------|---|--|---|---|------------------------------|---|--|---|---|--|---|---|-----------------------|--------------------------------|--------------------|-------|--| | Scc | oring Criteria | | Yes = 3 (Problem
Catchment)
No = 0 | Yes = 3
No = 0 | Frequent = 3 Occasional = 2 None = 0 | Poor = 3 Fair = 2 Good = 0 | Photography High = 3 Medium = 2 Low = 1 | Observation High = 3 Medium = 2 Low = 1 | Yes = 3
No = 0 | Staff Yes = 3 No = 0 | Yes = 3
No = 0 | Description | Maps Yes=2 No=0 | Yes =1
No = 0 | Associates Yes =1 No = 0 | Yes =1
No = 0 | | | | 5206-01-1-L1 | 0 | High Hill Pond | | 0 | | 0 | 1 | 2 | 0 | | 0 | Wooded area with a small cleared portion for overhead electrical lines. | | 1 | 0 | 0 | 4 | Low Priority | | 5206-02-1-L1 | 6 | North Farms Reservoir
into Wharton Brook | | 0 | | 2 | 3 | 2 | 0 | | 0 | Developed with commercial or industrial sites. High impermeable areas. Lightly wooded areas | | 1 | 1 | 1 | 10 | High Priority | | 5207-00-1 | 44 | Wharton Brook | | 0 | | 2 | 3 | 2 | 0 | | 3 | Residential houisng, some cleared land | | 1 | 1 | 1 | 13 | High Priority | | 5207-00-1-L1 | 17 | North Farms Reservoir | | 0 | | 0 | 1 | 2 | 0 | | 0 | Some commercial, wooded,
agricultural land, light
residential | | 1 | 0 | 0 | 4 | Low Priority | | 5207-00-1-L2 | 66 | Wharton Brook, Catlin
Brook | | 0 | | 2 | 3 | 2 | 0 | | 3 | Residential housing, some
wooded and agricultural
land | | 1 | 0 | 1 | 12 | High Priority | | 5207-00-2-R1 | 11 | Wharton Brook | | 0 | | 2 | 3 | 2 | 0 | | 3 | Residential housing, some commecial, light wooded | | 1 | 1 | 1 | 13 | High Priority | | 5207-00-2-R2 | 9 | Wharton Brook | | 0 | | 2 | 2 | 2 | 0 | | 3 | Commercial, light wooded | | 1 | 1 | 1 | 12 | High Priority | | 5207-01-1 | 46 | Unnamed Stream | | 0 | | 2 | 3 | 2 | 0 | | 3 | Residential houisng, commercial, golf course | | 1 | 1 | 1 | 13 | High Priority | | 5207-02-1 | 0 | Unnamed Stream | | 0 | | 2 | 1 | 1 | 0 | | 0 | Wooded Commercial and residential | | 1 | 0 | 1 | 6 | Problem | | 5207-02-1-L1 | 47 | Allen Brook | | 0 | | 2 | 3 | 2 | 0 | | 3 | housing, highway, golf
course | | 1 | 1 | 1 | 13 | High Priority | | 5208-00-1 | 1 | Unnamed Stream | | 0 | | 0 | 1 | 2 | 0 | | 3 | Wooded, light residential housing | | 1 | 0 | 0 | 7 | Problem | | 5208-00-1-L1 | 74 | Muddy River | | 0 | | 2 | 2 | 1 | 0 | | 3 | Wooded and commercial, light residential housing | | 1 | 0 | 1 | 10 | Problem | | 5208-00-2-R1 | 5 | Unnamed Stream | | 0 | | 0 | 1 | 2 | 0 | | 3 | Wooded and residential hoiusing | | 1 | 0 | 0 | 7 | Problem | | Catchment ID | Outfalls
Included | Receiving Water(s) | Previous
Screening
Results Indicate
Likely Sewer
Input? ¹ | Discharging to
Area of Concern
to Public Health? | Frequency of Past
Discharge
Complaints | Receiving
Water Quality ³ | Density of
Generating Sites
4 | Age of Development/ Infrastructure ⁵ | Historic
Combined
Sewers or
Septic? ⁶ | Aging
Septic? ⁷ | Culverted
Streams? ⁸ | Additional Characteristics | Sewer Repair
Nearby? | Urbanized Area | DCIA >11% | Impaired Waterbody | | Priority Ranking
0-5: Low Priority | |--------------|----------------------|--|--|--|--|---|---|---|---|---------------------------------|------------------------------------|---|------------------------------|------------------|-----------------------------------|--------------------|-------|---------------------------------------| | Infor | mation Source | | Catchment inspections and sample results | GIS Maps | Municipal Staff | Impaired
Waters List | Land Use/GIS
Maps, Aerial
Photography | Land Use
Information, Visual
Observation | Municipal Staff,
GIS Maps | Land Use,
Municipal
Staff | GIS and Storm
System Maps | Other | Municipal Staff, GIS
Maps | CLEAR | Nathan L Jacobson &
Associates | CLEAR | Score | 6-9: Problem ≥: 10 high Priority | | Sco | ring Criteria | | Yes = 3 (Problem
Catchment)
No = 0 | Yes = 3
No = 0 | Frequent = 3 Occasional = 2 | Poor = 3
Fair = 2 | High = 3
Medium = 2 | High = 3
Medium = 2 | Yes = 3
No = 0 | Yes = 3
No = 0 | Yes = 3
No = 0 | Description | Yes=2
No=0 | Yes =1
No = 0 | Yes =1
No = 0 | Yes =1
No = 0 | | | | | | | 140 - 0 | 140 - 0 | None = 0 | Good = 0 | Low = 1 | Low = 1 | 140 - 0 | | 140 - 0 | | 140-0 | 140 - 0 | No = 0 | 140 - 0 | | | | 5208-00-3-L2 | 11 | Mackenzie
Reservoir,Unnamed
Stream | | 0 | | 0 | 2 | 2 | 0 | | 0 | Agricultural land, some wooded and residential houisng | | 1 | 0 | 0 | 5 | Low Priority | | 5208-00-3-L3 | 11 | Muddy River | | 0 | | 2 | 1 | 2 | 0 | | 3 | Wooded, light residential housing and cleared land | | 1 | 0 | 1 | 10 | High Priority | | 5208-00-3-R1 | 0 | Muddy River | | 0 | | 2 | 1 | 2 | 0 | | 3 | Wooded, light residential housing | | 0 | 0 | 1 | 9 | Problem | | 5208-00-3-R2 | 3 | Muddy River | | 0 | | 2 | 2 | 2 | 0 | | 3 | Wooded and agricultural land, some residential housing | | 0 | 0 | 1 | 10 | High Priority | | 5208-00-3-R3 | 3 | Muddy River | | 0 | | 2 | 1 | 2 | 0 | | 3 | Wooded and some residential houisng | | 1 | 0 | 1 | 10 | High Priority | | 5208-00-3-R4 | 0 | Muddy River | | 0 | | 2 | 1 | 1 | 0 | | 0 | Wooded | | 1 | 0 | 1 | 6 | Problem | | 5208-00-3-R5 | 0 | Muddy River | | 0 | | 2 | 1 | 1 | 0 | | 0 | Wooded and cleared land | | 1 | 0 | 1 | 6 | Problem | | 5208-01-1 | 8 | Unnamed Stream | | 0 | | 0 | 2 | 2 | 0 | | 3 | Commercial and wooded,
some residential housing,
highway | | 1 | 0 | 0 | 8 | Problem | | 5208-02-1 | 4 | Spring Brook | | 0 | | 0 | 1 | 2 | 0 | | 0 | Wooded, some
commercial, light
residential housing and
agricultural land | | 0 | 0 | 0 | 3 | Low Priority | | 5208-02-1-L1 | 1 | Ulbrich Reservoir,
Spring Brook | | 0 | | 0 | 1 | 2 | 0 | | 3 | Reservoir, some wooded
and agricultural land, light
residential housing | | 0 | 0 | 0 | 6 | Problem | | 5208-02-2-R1 | 10 | Spring Brook | | 0 | | 0 | 2 | 2 | 0 | | 3 | Residential housing and wooded | | 1 | 0 | 0 | 8 | Problem | | 5208-03-1 | 11 | Unnamed Stream | | 0 | | 0 | 1 | 2 | 0 | | 3 | Wooded and residential housing, light commercial | | 1 | 0 | 0 | 7 | Problem | | 5208-04-1 | 9 | Unnamed Stream | | 0 | | 0 | 1 | 1 | 0 | | 3 | Pond | | 0 | 0 | 0 | 5 | Low Priority | | 5208-04-1-L1 | 0 | Scards Pond | | 0 | | 0 | 1 | 2 | 0 | | 0 | Wooded, agricultural land,
light residential housing | | 0 | 0 | 0 | 3 | Low Priority | | 5208-05-1 | 0 | Mackenzie Reservoir | | 0 | | 0 | 1 | 1 | 0 | | 0 | Wooded, reservoir | | 0 | 1 | 0 | 3 | Low Priority | | 5208-05-1-L1 | 25 | Unnamed Streams | | 0 | | 0 | 1 | 2 | 0 | | 0 | Wooded, some residential
housing and agricultural
land, highway | | 1 | 0 | 0 | 4 | Low Priority | | Catchment ID | Outfalls
Included | Receiving Water(s) | Previous
Screening
Results Indicate
Likely Sewer
Input? ¹ | Discharging to
Area of Concern
to Public Health? | Prequency of Past | Receiving
Water Quality ³ | Density of
Generating Sites
4 | Age of
Development/
Infrastructure ⁵ | Historic
Combined
Sewers or
Septic? ⁶ | Aging
Septic? ⁷ | Culverted
Streams? ⁸ | Additional Characteristics | Sewer Repair
Nearby? |
Urbanized Area | DCIA >11% | Impaired Waterbody | | Priority Ranking
0-5: Low Priority | |--------------|----------------------|--------------------------------|--|--|--|---|---|---|---|---------------------------------|------------------------------------|---|------------------------------|------------------|-----------------------------------|--------------------|-------|---------------------------------------| | Infor | mation Source | 2 | Catchment inspections and sample results | GIS Maps | Municipal Staff | Impaired
Waters List | Land Use/GIS
Maps, Aerial
Photography | Land Use
Information, Visual
Observation | Municipal Staff,
GIS Maps | Land Use,
Municipal
Staff | GIS and Storm
System Maps | Other | Municipal Staff, GIS
Maps | CLEAR | Nathan L Jacobson &
Associates | CLEAR | Score | 6-9: Problem
≥: 10 high Priority | | Scc | oring Criteria | | Yes = 3 (Problem
Catchment)
No = 0 | Yes = 3
No = 0 | Frequent = 3 Occasional = 2 None = 0 | Poor = 3 Fair = 2 Good = 0 | High = 3 Medium = 2 Low = 1 | High = 3 Medium = 2 Low = 1 | Yes = 3
No = 0 | Yes = 3
No = 0 | Yes = 3
No = 0 | Description | Yes=2
No=0 | Yes =1
No = 0 | Yes =1
No = 0 | Yes =1
No = 0 | | | | 5208-06-1 | 25 | Unnamed Stream | | 0 | | 0 | 2 | 2 | 0 | | 3 | Agricultural land, some residential, highway | | 1 | 0 | 0 | 8 | Problem | | 5208-07-1 | 0 | Unnamed Stream | | 0 | | 0 | 1 | 1 | 0 | | 3 | Wooded | | 0 | 0 | 0 | 5 | Low Priority | | 5208-08-1 | 23 | Pine River, Unnamed
Streams | | 0 | | 0 | 2 | 2 | 0 | | 3 | Wooded with residential housing, light cleared land | | 1 | 0 | 0 | 8 | Problem | | 5208-09-1 | 0 | None | | 0 | | 0 | 1 | 1 | 0 | | 0 | Wooded | | 1 | 0 | 0 | 3 | Low Priority | | 5302-02-1 | 0 | Unnamed Stream | | 0 | | 0 | 2 | 2 | 0 | | 3 | Residential housing, some wooded areas and marsh, golf course | | 1 | 0 | 0 | 8 | Problem | | 5302-04-1-L1 | 16 | Butterwoth Brook | | 3 | | 0 | 2 | 2 | 0 | | 3 | Wooded with residential housing | | 1 | 0 | 0 | 11 | High Priority | #### Scoring Criteria - Olfactory or visual evidence of sewage, - Ammonia ≥ 0.5 mg/L, surfactants ≥ 0.25 mg/L, and bacteria levels greater than the water quality criteria applicable to the receiving water, or - Ammonia ≥ 0.5 mg/L, surfactants ≥ 0.25 mg/L, and detectable levels of chlorine - ³ Receiving water quality based on latest version of State of Connecticut Integrated Water Quality Report. - Poor = Waters with approved TMDLs (Category 4a Waters) where illicit discharges have the potential to contain the pollutant identified as the cause of the impairment - Fair = Water quality limited waterbodies that receive a discharge from the MS4 (Category 5 Waters) - Good = No water quality impairments - ⁴ Generating sites are institutional, municipal, commercial, or industrial sites with a potential to contribute to illicit discharges (e.g., car dealers, car washes, gas stations, garden centers, industrial manufacturing, etc.) - ⁵ Age of development and infrastructure: - High = Industrial areas greater than 40 years old and areas where the sanitary sewer system is more than 40 years old - Medium = Developments 20-40 years old - Low = Developments less than 20 years old - ⁶ Areas once served by combined sewers and but have been separated, or areas once served by septic systems but have been converted to sanitary sewers. - ⁷ Aging septic systems are septic systems 30 years or older in residential areas. - $^{\rm 8}$ Any river or stream that is culverted for distance greater than a simple roadway crossing. - ⁹ Based off of CT NEMO DCIA Calculations Pending investigation ¹ Previous screening results indicate likely sewer input if any of the following are true: ² Catchments that discharge to or in the vicinity of any of the following areas: public beaches, recreational areas, drinking water supplies, or shellfish beds # **ATTACHMENT IV- Stormwater Retrofit Program** **TOWN OF WALLINGFORD** #### **PREPARED FOR:** Town of Wallingford #### PREPARED BY: Atlas 290 Roberts Street-Suite 301 East Hartford, Connecticut 06108 6280 Riverdale Street San Diego, CA 92120 (877) 215-4321 | oneatlas.com December 2021 Project No. 2419022001 MR. ROBERT BALTRAMAITIS TOWN OF WALLINGFORD CONNECTICUT 06492 **Subject:** Stormwater Retrofit Program **Town of Wallingford** Dear Mr. Baltramaitis, Atlas is pleased to present this Stormwater Retrofit Program If you have any questions, please call us at (860) 608-8576. Respectfully submitted, **Atlas** The Wall Name: Luke Whitehouse **Title:** Environmental Division Manager Luke.Whitehouse@oneatlas.com Name: Kay Lehoux **Title:** Environmental Scientist Kay.Lehoux@oneatlas.com #### **CONTENTS** | EXE | - CU1 | IVE SUI | //MARY | 1 | |------------|--------------|----------|--|--------| | 1. | OBJ | ECTIVE | S AND BENEFITS OF STORMWATER RETROFITS | 1 | | 2. | WHE | N IS RE | TROFITTING APPROPRIATE? | 2 | | 3. | STO | RMWAT | ER RETROFIT OPTIONS | 3 | | | 3.1 | Low Im | pact Development (LID) Management Practices | 3 | | | | 3.1.1 | Bioretention and Infiltration Basins | | | | | Properl | y Functioning Bioretention or Infiltration Basins | 3 | | | | | erations on the Rehabilitation of Bioretention or Infiltration Basins | | | | | 3.1.2 | Bioretention and Infiltration Basins Variations | 4 | | | | | Conventional Bioretention basin | | | | | | Soggy Bioretention basins | 6 | | | | | Naturalized Basin | | | | | | Internal Water storage (IWS)Forebays | /
8 | | | | | Media amendments for Ageing Systems | 9 | | | | 3.1.3 | Bioretention or Infiltration Basin Inspections | | | | | 3.1.4 | Rain Gardens | 11 | | | 3.2 | Rainwa | ter Harvesting/Stormwater Reuse & Rain Barrel Programs | 11 | | | 3.3 | | Frading Program | | | | 3.4 | Buffer (| Ordinance | 14 | | | 3.5 | Addition | nal Disconnect Strategies | 15 | | | | 3.5.1 | Curbless Streets | 15 | | | | 3.5.2 | Permeable Pavement | 15 | | 4. | STO | RMWAT | ER DISCONNECT TRACKING | 16 | | | 4.1 | Directly | Connected Impervious Areas (DCIA) | 16 | | | | 4.1.1 | Impervious Cover Tracking | | | | 4.2 | Urbaniz | zed Areas | 20 | | | 4.3 | Impaire | d Waterbodies | 22 | | | 4.4 | Catchm | ent Priority Rankings | 25 | | 5 . | RET | ROFIT P | LANNING | 28 | | | 5.1 | Municip | pal Owned Facilities and Parks | 28 | | | 5.2 | Non-Mu | unicipal Retrofitting | 51 | | | 5.3 | Retrofit | Planning | 54 | | | | | | | | | | | | | | TA | BLES | 6 | | | | Tab | le 1 – | Site Co | nsiderations for Determining the Appropriateness of Stormwater Retrof | its2 | | Tab | le 2 – | Conside | rations on the Rehabilitation of a Bioretention or Infiltration Basins | 4 | | | | | | | | Table 3– Media Amendments | 9 | |---|----| | Table 4– Bioretention or Infiltration Basin Checklist | 10 | | Table 5– Rainwater Harvesting/Stormwater Reuse & Rain Barrel Programs | 12 | | Table 6 – Performance of the NCE, 2002-2009 | 13 | | Table 7 – Buffer Ordinance Design Standards | 14 | | Table 8 – DCIA | | | Table 9 – Urbanized Areas by Catchment | 21 | | Table 10 –Catchments Containing Impaired Waterbodies | 23 | | Table 11 – High Priority and Problem Catchments | 26 | | Table 12 – Municipal Owned | | | Table 13 – Non-Municipal Retrofitting | | | Table 14 – Retrofit Planning | 54 | | | | | GRAPHICS | | | Graphic 1: Improper Functionality of Bioretention or Infiltration Basins | 4 | | Graphic 2: Bioretention Basin Retrofit Projects for Improved Water Quality Mitigation | 5 | | Graphic 3: Conventional Bioretention Basin | 5 | | Graphic 4: From Bioretention to Wetlands or Detention Basins | 6 | | Graphic 5: Internal Water Storage | 7 | | Graphic 6: Forebays | | | Graphic 7: Forebay Implementation | 9 | | Graphic 8: Rain Garden Retrofit Benefits | | | Graphic 9: Impervious Cover Disconnection Spreadsheet | | #### **APPENDICES** Appendix I References Appendix II Figures Appendix IV Buffer ordiance template Appendix IV DCIA calculations Appendix V Impervious Cover Tracking Spreadsheet Appendix VI Catchment Rankings #### **EXECUTIVE SUMMARY** The goal of this Stormwater Retrofit Program is to comply with *Section (6) (B) (ii)* of the Connecticut Department of Energy and Environmental Protection (CTDEEP) 2017-2022 General Permit for the Discharge of Stormwater from Small Municipal Separate Storm Sewer Systems (MS4 Permit). Specifically, the Town of Wallingford (Town) will work towards disconnecting existing Directly Connected Impervious Areas (DCIA). According to the MS4 Permit, "an area of DCIA is considered disconnected when the appropriate portion of the Water Quality Volume has been retained in accordance with the requirements of Section 6(a)(5)(B)(i) or (ii) of this general permit" (CTDEEP, 2017). For clarification, the MS4 Permit defines the following: A Retrofit Project is "One that modifies an existing developed site for the primary purpose of disconnecting DCIA. The DCIA calculation performed pursuant to Section 6(a)(5)(C) shall serve as the baseline for the retrofit Program required in this section" (NEMO, 2021). A Low Impact Development (LID) is defined as a means "to maintain, mimic, or replicates pre-development hydrology through the use of numerous site design principles and small-scale treatment practices distributed throughout a site to manage runoff volume and water quality at the source" (NEMO, 2021). To accomplish the disconnecting of DCIA, LID,
runoff reduction measures, or any other means by which stormwater is infiltrated into the ground or reused for other purposes without a surface or storm sewer discharge may be implemented (CTDEEP, 2017). The following document provides guidance on implementing LID, runoff reduction measures, or other means to disconnect or improve stormwater quality. It should be noted that the following programs or practices in this document are considered a Retrofit Project only if it disconnects an area, whether it be commercial, residential, or industrial, that was directly connected to the MS4. Areas that implement the following programs or practices, as provided for guidance in this document or otherwise, that are not directly connected to the Town's MS4 system (while still beneficial in other ways) cannot be counted towards the Town's disconnect percentage. Retrofit Projects will be clearly defined throughout this document, easily accessible, and clearly defined henceforth with **bolded and underlined text**. Important factors pertaining to LID, runoff reduction measures, or other means by which stormwater is infiltrated have been italicized throughout this document, with the exception of quoted, referenced material. #### 1. OBJECTIVES AND BENEFITS OF STORMWATER RETROFITS The objective of a stormwater retrofit program, according to the CTDEEP, is "...To remedy problems associated with, and improve water quality-mitigation functions of, older, poorly designed or poorly maintained stormwater management. The incorporation of stormwater retrofits into existing developed sites or redevelopment projects can reduce adverse impacts of uncontrolled stormwater runoff systems. Stormwater retrofits can also remedy local nuisance conditions and maintenance problems in older areas, as well as improve the appearance of existing facilities" (CTDEEP, 2004). #### 2. WHEN IS RETROFITTING APPROPRIATE? Site constraints may exist, and are common in developed areas. Site constraints can often limit the type of stormwater Retrofit Projects that are possible, as well as their overall effectiveness. Specific factors, such as location of existing utilities, buildings, wetlands, maintenance access, and adjacent land uses may affect the retrofitting of an existing stormwater management facility. Stormwater should not be infiltrated in Aquifer Protection Areas where there is a high pollutant load, sites with existing subsurface contamination, or a drinking water wellhead area (UCONN, 2020). Consider the following site-specific factors to determine the appropriateness of stormwater Retrofit Project implementation: Table 1 – Site Considerations for Determining the Appropriateness of Stormwater Retrofits | Factor | Consideration | |--|---| | Retrofit Purpose | What are the primary and secondary (if any) purposes of the retrofit project? Are the retrofits designed primarily for stormwater quantity control, quality control, or a combination of both? | | Construction/Maintenance
Access | Does the site have adequate construction and maintenance access and sufficient construction staging area? Are maintenance responsibilities for the retrofits clearly defined? | | Subsurface Conditions | Are the subsurface conditions at the site (soil permeability and depth to groundwater/bedrock) consistent with the proposed retrofit regarding subsurface infiltration capacity and constructability? | | Utilities | Do the locations of existing utilities present conflicts with the proposed retrofits, require relocation, or design modifications? | | Conflicting Land Uses | Are the retrofits compatible with adjacent land uses of nearby properties? | | Wetlands, Sensitive
Water Bodies, and
Vegetation | How do the retrofits affect adjacent or downgradient wetlands, sensitive receiving waters, and vegetation? Do the retrofits minimize or mitigate impacts where possible? | | Complementary
Restoration Projects | Are there opportunities to combine stormwater retrofits with complementary projects such as stream stabilization, habitat restoration, or wetland restoration/mitigation? | | Permits and Approvals | Which local, state, and federal regulatory agencies have jurisdiction over the proposed retrofit project, and can regulatory approvals be obtained for the retrofits? | | Public Safety | Does the retrofit increase the risk to public health and safety? | | Cost | What are the capital and long-term maintenance costs associated with the stormwater retrofits? Are the retrofits cost-effective in terms of anticipated benefits? | Source: NEMO (N.D) #### 3. STORMWATER RETROFIT OPTIONS #### 3.1 Low Impact Development (LID) Management Practices LID practices include natural or fabricated swales, depressions, and/or vegetated areas that are designed to capture, filter, and infiltrate stormwater runoff utilizing soils and vegetation (USEPA, 2014). The implementation of LID Practices lower long-term life cycles costs, perform better, and provide additional benefits such as improved aesthetics and enhanced property values. While LID practices generally require a lower initial investment, they may require continuous maintenance of established vegetation. However, established LID practices may be maintained in the same manner as landscaping. LID Practices should follow the following rules: - 1. Is it safe, both environmentally and for human health? - 2. Aesthetically pleasing - 3. Compliant with the Connecticut Department of Energy and Environmental Protection applicable and local regulations (UCONN, 2021). #### 3.1.1 Bioretention and Infiltration Basins Many towns, communities, and commercial or industrial facilities utilize bioretention or infiltration basins as a means to infiltrate pollutants of concerns (POC), reduce peak flow or total water volume, as well as adding an aesthetically pleasing area to the location. Typically, an infiltration basin has more potential in reducing peak flow or total water volume, as well as removing POC. Infiltration basins often have an increased advantage of phosphorus and nitrogen uptake, as well as some anaerobic conditions for bacterial removal (UCONN, 2021). Infiltration basins can be utilized for the less frequent large-storm events that may exceed the capacity of upgradient practices. Bioretention basins create habitat, nutrient cycling, and aesthetics, and are often preferred for the reduced installation and maintenance costs. *Bioretention basins are generally utilized on a smaller scale, and are designed for typical storm events*. Bioretention basins are more likely to be maintained if aesthetically pleasing, therefore; considerations should be made to provide suitable plant species of which will create environmentally friendly habitats while maintaining public support or interest (PCA, 2020). #### **Properly Functioning Bioretention or Infiltration Basins** Bioretention or infiltration basins (while an excellent addition to stormwater infrastructure) must function properly in order to meet regulation criteria, reduce POC, and provide a safe and healthy environment for the surrounding area. **Graphic 1** provides examples of bioretention or infiltration basins that are considered poorly functioning. **Graphic 1: Improper Functionality of Bioretention or Infiltration Basins** Source: Created by Atlas Technical Consultants (2021). #### Considerations on the Rehabilitation of Bioretention or Infiltration Basins When working towards disconnection goals, several factors should be considered when identifying if a basin should be rehabbed or retrofitted, and are as follows: Table 2 - Considerations on the Rehabilitation of a Bioretention or Infiltration Basins | Factor | Consideration | |----------------------|---| | Regulatory Standards | Does it still meet the applicable regulatory criteria? | | Financial Incentives | What will it cost to rehabilitate (removal of sedimentation, etc.) or retrofit? | | Human Health | Is this in an area where it can affect human health? For example, will it create a mosquito breeding ground near schools or public areas? | | Water Table | Is the water table greatly influencing the filtration of this Bioretention Pond? | | Outlet Structure | What type of outlet structure is being utilized, and again, what are the costs for rehab or retrofit? | Source: Created by Atlas Technical Consultants (2021) #### 3.1.2 Bioretention and Infiltration Basins Variations #### **CONVENTIONAL BIORETENTION BASIN** A conventional bioretention basin, often referred to as a *detention basin*, typically consists of stormwater discharge into the basin, the temporary storage of unfiltered stormwater, and the eventual discharge to a designed outfall location. An underdrain typically lines the basin, allowing for stormwater, which has infiltrated the surficial material, to discharge to a designed outfall. An overflow is generally added in the event of a large storm. Some woody materials (trees, small bushes) may be present, which allows for the uptake of infiltrated stormwater in the evapotranspiration zone, decreasing the amount of discharged stormwater (UCONN, 2021). Graphic 2 summarizes modifications to existing Bioretention basins for improved water quality mitigation. If the following modifications are made to a basin that is directly connected to the MS4 System, then it can be considered a Retrofit Project. **Graphic 2: Bioretention Basin Retrofit Projects for Improved Water Quality Mitigation** Source: Adapted from Claytor, Center for Watershed Protection, 2000; Pennsylvania Association of Conservation Districts et al., 1998; and NJDEP, 2000. Media
(Evapotranspiration Zone) Drainage (Underdrain) **Graphic 3: Conventional Bioretention Basin** Source: Created by Atlas Technical Consultants (2021), #### SOGGY BIORETENTION BASINS If a bioretention basin is continuously found soggy, then retrofitting the basin into a wetland or detention basin may be the best option. Converting a bioretention basin into a wetlands area or detention basin will provide higher peak flow rate and water volume reduction than other Retrofit Projects, however, *it will not increase the amount of POC removed*. For a converted bioretention basin or detention basin to be considered a Retrofit Project, first, determine if this basin is directly connected to the MS4 System. Then, install an elbow into the basin to increase pooling, which in turn will increase the peak flow and total water volume that is contained within the basin. A "T" can be installed rather than an elbow, if it is decided that the original outlet should remain in the event of a large storm and/or heavy soil saturation. An attempt can be made to introduce wetland plants; however, based on soil type (for example, heavy infiltrative), they may not survive. As pooling depths increase, so too does the chance of potential safety concerns for the public (i.e. drowning). A fence should always be installed to surround the basin. **Graphic 4: From Bioretention to Wetlands or Detention Basins** Source: Created by Atlas Technical Consultants (2021), #### **NATURALIZED BASIN** A familiar sight in bioretention or infiltration basins is an abundance of woody material in the form of trees or small bushes. While some basins may have poor functionality with woody material growth, there are potential benefits of maintaining woody systems in a bioretention or infiltration basin. Prior to shifting maintenance techniques or implementing other modifications to encourage woody growth, determine if this basin directly discharges to the Town's MS4 System. If directly connected, it can be considered a Retrofit Project. Woody systems (naturalized basin) allow for a higher rate of water volume to be infiltrated. Based on this higher rate of infiltrated stormwater, the POC load removed is greater than bioretention or infiltration basins functioning normally. Trees will occupy approximately 1% of water uptake in bioretention or infiltration basins, as opposed to no woody vegetation (UCONN, 2021). Other benefits include less maintenance and lower costs. There is a high potential of attracting mosquito populations for naturalized basins. It is recommended that naturalized basins not be constructed within 500 feet (ft.) of a public area. Studies have not been conducted on whether old woody growth or new woody growth is more beneficial in the uptake of POC or water. In theory, newer growth would promote soil movement due to root growth, and would increase the surface area for higher rates of infiltration (UCONN, 2021). #### **INTERNAL WATER STORAGE (IWS)** A conventional bioretention or infiltration basin may not always meet the needs of a site or community, particularly in areas of high stormwater volume. An internal water storage (IWS), if created properly, will reduce volume output by approximately 35%, as well as increasing the evapotranspiration rate. This system can also remove approximately 58% of nitrogen input (UCONN, 2021). To be considered a Retrofit Project; first determine if this basin directly discharges to the Town's MS4 system. As with a conventional bioretention or infiltration basins, an underdrain will line the bottom of the basin. The underdrain will be followed by gravel. *It should be noted that processed gravel should NOT be utilized.* The sedimentation caused by processed/fine gravel does not allow for ponding or storage area of infiltrated water, and will reduce the peak flow intercepted. An elbow is then installed into the underdrain, forcing the water to pond internally. A total of 18-inches only should be the increase in internal ponding. This internal ponding will preserve the filtration system, and improve peak flow and total water volume, with the exception of soil group 'D' (UCONN, 2021).. **Graphic 5: Internal Water Storage** Source: Created by Atlas Technical Consultants (2021), #### **FOREBAYS** Forebays are designed and utilized to slow stormwater runoff, as well as provide pretreatment of runoff and facilitate the separation of suspended solids (MADEP, N.D). Advantages include the following: "Provides pretreatment of runoff before delivery to other best management practices (BMPs), slows velocities of incoming stormwater, easily accessed for sediment removal, longevity is high with proper maintenance, relatively inexpensive compared to other BMPs, and a greater detention time than proprietary separators" (MADEP, N.D.). With the implementation of a forebay, media life expectancy can be extended up to approximately 500-years. The implementation of a forebay allows for the removal of phosphorus, nitrogen, metals, and sediment. The implementation of a forebay can only be considered a Retrofit Project if the basin, pond, etc., directly discharges to the MS4 system. Disadvantages of a forebay include the removal of only coarse sediment fractions; therefore, soluble pollutants will remain and potentially discharge to the entirety of the basin. There is also no recharge to groundwater in a forebay, as well as no control of the volume of runoff. *Frequent maintenance is essential* (MADEP. N.D.). **Graphic 6: Forebays** Source: Created by Atlas Technical Consultants (2021). **Graphic 7: Forebay Implementation** Source: MADEP. No Date. Sediment Forebays. #### MEDIA AMENDMENTS FOR AGEING SYSTEMS Soils are part of fundamental design characteristics of most construction practices, including those of stormwater practices. Properly functioning media provide rapid infiltration rates, attenuate POC, and generally allow for plant growth (PCA, 2021). *Thus, as basins age, so too does the media.* Several amendments, including compost, woodchips, or the by-products of water treatment (water treatment residuals) for drinking water can be applied to increase infiltration, attenuate POC, and promote healthy plant growth. Water treatment residuals, as defined by the Minnesota Pollution Control Agency, are primarily sediment, metals (aluminum, or, or calcium), oxide/hydroxides, activated carbon, and lime removed during purification processes of raw water (PCA, 2021). In order to be considered a Retrofit Project, media amendments should be made to basins, forebays, IWS, etc. that are directly connected to the MS4 system. **Table 3- Media Amendments** | Media | Benefits | POC Potentially
Attenuated | Considerations | | |-----------|---|---|--|--| | Compost | Increases soil infiltration rate Reduces runoff Improves soil porosity Increases soil moisture holding capacity Reduces maintenance needs Alleviates compaction from construction activities | Hydrocarbons Solvents Heavy metals | Unstable composts may utilize available nitrogen and stunt plant growth Compost from bio solids and/or animal manure may contain unwanted nutrients. Ages relatively rapidly | | | Woodchips | Slowly release nutrients if maintained properly Effectively retain and slowly release moisture Provide weed control Relatively cheap Resists compaction | Nitrogen Oil & Grease Carbon source in the degradation of nitrate, sulphate, ammonia, and ammonium Some heavy metals | Leachate from fresh woodchips is acidic, which may produce chemical oxygen demand (COD) and release unwanted nutrients. Negative aquatic response to leachate has been observed near wood chipping facilities | | | | | | Woodchips from
recycled wood may
contain creosote, dyes,
or other toxic materials. | |---|---|---|---| | Spent Lime | Reduces the impact of
phosphorus to receiving
waters. | Dissolved
Phosphorus | Due to spent lime's
absorptive properties,
there is a potential to
contain chemicals that
may be of an
environmental concern. | | Aluminum and Iron Water
Treatment Residuals
(WTR) | Improves plant growth | Phosphorus retention, particularly dissolved Several studies show AL- and Fe-WTR are effective at retaining nitrogen when nitrogen is found in high amounts. | Potential of leaching, thus damaging aquatic environments Leaching potential is dependent on soil pH. | | Alum | Reduces
soil pH Reduces Turbidity/ Total
Suspended Solids No restrictions for use as
fill material or cover | Nitrogen Phosphorus Metals Bacteria | Studies have not been conducted on PCBs or PFAS additives of Alumtreated soils Extensive study is necessary of the discharge watershed area. (Harper. N.D) | Source: Created by Atlas Technical Consultants (2021), Adapted from PCA, 2021, and Harper, N.D. # 3.1.3 Bioretention or Infiltration Basin Inspections Maintenance of bioretention or infiltration basins is essential in preserving the functionality of basins and promoting high quality stormwater discharge. The following checklist can be utilized in performing bioretention or infiltration basin inspections: **Table 4– Bioretention or Infiltration Basin Checklist** | Factor | Consideration | Observations | Maintenance Performed | |--|--|--------------|-----------------------| | Bed Surface | Is there excessive sediment, caking, trash, or moldy mulch? | | | | Evidence of
Underdrainage or
Observation Wells | Is this system functioning properly? Is there excessive sediment or clogging? | | | | Mulch/Media | Does the media need replaced? Is there standing water that is not infiltrating? | | | | Bed Drainage | Time your bed drainage: Is water ponding for longer than a day? | | | | Outlet Structure | Is there evidence of clogging or outflow release velocities that are great than the designed flow? | | | Source: Created by Atlas Technical Consultants (2021), adapted from MADEP and UCONN NEMO. #### 3.1.4 Rain Gardens Rain gardens are a relatively easy and aesthetic Retrofit Project option for small communities or homes. According to NEMO, a rain garden is "a depression (about 6 inches deep), that collects stormwater runoff from a roof, driveway, or yard, and allows it to infiltrate into the ground" (CLEAR, 2021.). Typically, a residential rain garden is 50 to 100 square feet, and includes a variety of native shrubs and plants. A rain garden should never be installed in a low area or an area that is wet; it is not a water garden or wetland. **Graphic 8: Rain Garden Retrofit Benefits** # Rain Garden Retrofit Benefits - Reduce the amount of pollutions that wash into lakes, streams, ponds, and wetlands - Help sustain adequate stream flow during dry spells through infiltration and recharge - Enhance the beauty of yards and neighborhood - Encourage the growth of native shrubs and plants - Help protect communitities from flooding and drainage problems - Reduce the need for costly municipal stormwater treatment structrues - · Lower costs for installation - Easy installation (CLEAR. 2021) Source: Created by Atlas Technical Consultants (2021) Promoting the installation of rain gardens is easy; encourage the utilization of the Rain Garden Application, created by the CT NEMO Program. Once a community or home has installed a rain garden, encourage citizen reporting to track disconnects and retrofits. To track these Retrofit Projects, communities considering the implementation of a rain garden should be defined internally as to whether it is directly connected to the MS4 system. ## 3.2 Rainwater Harvesting/Stormwater Reuse & Rain Barrel Programs Managing stormwater in areas of tight spaces, highly commercialized or industrial areas, as well as intensely residential communities can pose issues with volume control, increased flooding and erosion, and an increase in non-point source pollution. The implementation of a rainwater harvesting/ stormwater reuse and rain barrel program can greatly reduce the aforementioned issues related to stormwater in these area types, as well as reducing the cost of potable water, promote potable water resource conservation, remove 100% of solids, nutrients, metals, pathogens, and toxins, and increase soil moisture for urban greenery (PCA. 2021). Areas that implement a Rainwater Harvesting/Stormwater Reuse & Rain Barrel Programs of which are directly connected to the Town's MS4 system can be considered a Retrofit Project. Data compiled from the Neighborhood Rain Barrel Partnership Project indicated, "...the average 50-gallon rain barrel could capture a 0.26-inch precipitation event, or 64 percent of the 28 precipitation events monitored" (EPA, 2008). The implementation of such a program could greatly increase the quality of stormwater, as well as involve the community in protecting the Town's navigable waterways. Potentially, with the utilization of ordinances or other legal means, the Town could require rain harvesting of an agreed upon percentage for commercial developments. Other considerations include historical land uses, facilities, or industrial uses may contaminate rainwater harvesting (PCA, 2021). **Table 5** describes the implementation, applications, and considerations of executing such a program. Table 5– Rainwater Harvesting/Stormwater Reuse & Rain Barrel Programs | Program | Implementation | Application | Considerations | |--------------|--|--|---| | Rain Barrels | Rain Barrels are typically small scale (25-100-gallons). Install at the downspout of a gutter system. Gravity is the simplest method of delivery; complex systems can be designed to deliver water from several barrels. Town may want to offer an agreed upon rebate residents or businesses that purchase specified rain barrels. | Collects and store rainwater for watering landscapes and gardens Cumulative effect includes volume reduction over entire watershed area Removes 100% of 100% of solids, nutrients, metals, pathogens, & toxins that would have potentially reached MS4 system. | Typical costs range from \$50 to \$230 for a 55-gallon drum. Plastic, food-grade 55-gallon drums range from \$15 to \$20. Barrel should include overflow deflection Routing features should be installed to keep water away from structure foundations Not to be utilized for tar & gravel, asbestos shingle, or treated cedar shake roof types. A fine screen over all openings or emptying of barrels should be conducted to prevent mosquito breeding. Disconnected in the winter to prevent deformation of the system | | Cisterns | Greater storage capacity Stored above or below ground Delivered utilized a pump system A surface stormwater pond (Bioretention or infiltration basin) could be designed to overflow into the cistern as well. | Typically utilized to irrigate landscapes, gardens, and ballparks on a regular basis Reduces strain on municipal water supplies during peak summer months. Potential for use in non-potable services (toilets, urinal flushing) | Typical costs range from \$200 to \$10,000 based on size, materials, and structural requirements Often complex system that requires continuous maintenance Designed overflow from a basin may need treatment prior to use for irrigation purposes. | Source: Created by Atlas Technical Consultants (2021), resourced from the Minnesota Pollution Control Agency (PCA) Pollution Prevention & the MS4 Program. ## 3.3 Credit Trading Program Stormwater POC have long afflicted navigable waterways, with negative effects including algae blooms, resource degradation, toxicity, and even an increase in drinking water treatment costs. Options in reducing stormwater POC often include LID-implementation, community participation, ordinances, and legal action. However, these practices may not always have the desired effect, particularly in areas of high industrial or commercialized infrastructure (point sources). A Credit Trading Program may be the solution, as it holds businesses accountable for stormwater pollution and promotes the increased quality of stormwater discharge. To find a successful Trading Credit Program, one need not look far. The Connecticut and New York Credit Trading Program (known as the Nitrogen Control Program for Long Island Sound) has been found to be incredibly effective in the reduction of nitrogen discharged to the Sound. The reduction of nitrogen input into the Sound was achieved by first achieving the total maximum daily load (TMDL) of nitrogen that could be discharged, and the implementation of an initiative nitrogen-trading program among sewage treatment plants located throughout the state. Established in 2002, by 2014 65 percent of nitrogen loading from
sewage treatment plants had been reduced (CTDEEP, 2020). To reduce the amount of the POC discharged, participating developers purchase credits from the Town. Developers directly connected to the MS4 system that participate in this program can be considered a Retrofit Project, as it pertains specifically to the area of previously connected surface that was disconnected. The amount of credits purchased is the equivalent of the POC in mass. Developers would then pay a fee on a per/lb. basis over a 30-year reduction period, for example. Developers then create and/or monitor POC removal from the stormwater infrastructure. The removal of the POC would be reported in mass. Developers that remove over the standards for their specific POC removal goal can sell credits to other developers who cannot meet their POC removal goal. Table 6 demonstrates the annual re-evaluation of developers of trading versus treating. Table 6 - Performance of the NCE, 2002-2009 | Trading
Year | Credit Prices
(Dollars) | Purchased
(Dollars) | Sold (Dollars) | Purchased (1,000 Credits) | Sold (1,000
Credits) | |-----------------|----------------------------|------------------------|----------------|---------------------------|-------------------------| | 2002 | \$1.65 | \$1,317,223 | \$2,357,323 | 798 | 1,429 | | 2003 | \$2.14 | \$2,116,875 | \$2,428,636 | 989 | 1,135 | | 2004 | \$1.90 | \$1,786,736 | \$2,659,804 | 940 | 1,400 | | 2005 | \$2.11 | \$2,467,757 | \$1,315,392 | 1,170 | 623 | | 2006 | \$3.40 | \$3,828,114 | \$2,394,956 | 1,126 | 704 | | 2007 | \$4.36 | \$5,159,019 | \$2,072,001 | 1,183 | 475 | | 2008 | \$4.50 | \$6,148,327 | \$2,660,688 | 1,366 | 591 | | 2009 | \$4.54 | \$4,390,023 | \$2,835,447 | 967 | 625 | | Total | | \$27,214,074 | \$18,724,247 | 8,539 | 6,982 | Source: CTDEEP. 2020. The implementation of a Credit Trading Program may create economic activity within the Town, motivate developers through monetary incentive, and create an annual re-evaluation on treating versus trading based on annual increases or decreases in credit costs. Considerations should be made in the potential buy back of credits - *if all developers meet the POC removal goal within the threshold (ex. 30-years), the Town will be liable for buying back all credits.* Funding may be available through the Clean Water State Revolving Fund (CWSRF) (EPA, 2021). #### 3.4 Buffer Ordinance A buffer can be defined as "small areas or strips of land in permanent vegetation, designed to intercept pollutants and manage other environmental concerns" (PCA, N.D.). Buffers present numerous advantages, including POC removal, erosion reduction, restore the integrity of water resources, contribute organic matter to aquatic ecosystems, provide riparian wildlife habitat, and bring scenic or recreational opportunity to the area (EPA, 2002). Buffers implemented in areas directly connected to the Town's MS4 system can be considered a Retrofit Project, as it pertains specifically to the area of previously connected surface that was disconnected. The United States Environmental Protection Agency (EPA) has created a model buffer ordinance, with suggested language or guidance in creating buffer ordinances, and is included in **Appendix III**. Design standards of a buffer ordinance, at a minimum, should include the following: Table 7 - Buffer Ordinance Design Standards | Standard | Considerations | |--|---| | Establish minimum width to apply to all buffers. | Customize requirements according to functions, values, and water body size. | | Determine how areas are to be calculated. | Identify flexibility in standard (using an average buffer width, etc.) Should allow changes to be made to adjust for slope, soils, encroaching land uses, or water utilization. | | Vegetative Specifications | Vegetative mixes based on soils, slope, region. | | Signage | Specify minimum spacing of
signage to identify buffer and
prevent encroachment | Source: Created by Atlas Technical Consultants (2021). Adapted from PCA Pollution Prevention and the MS4 Program. Following the implementation of a buffer ordinance, a Town-wide campaign can be utilized to inform developers and property owners of the benefits of a vegetated buffer. To reach the desired audience, brochures, signage at municipal locations, workshops, or seminars can be provided by the Town (PCA, N.D.). Maintenance of buffers will generally consist of mowing, removal of refuse or debris, inspections for erosion and infiltration, and the replacement of damaged or dead plants. The installation of a vegetated buffer is estimated at \$0.50 per square foot, as well as costs relating to labor or maintenance supplies (PCA, N.D.). Applications of a vegetated buffer can include natural drainage in residential areas, along roads in place of curbing, parking lot islands, low-flow conveyance in place of structural conveyance, pretreatment prior to discharge to open water, provide aesthetic appeal, and provide a natural habitat within urbanized areas (PCA, N.D). ## 3.5 Additional Disconnect Strategies #### 3.5.1 Curbless Streets Curbless streets, or streets that are sloped to vegetative areas, allow stormwater to drain into permeable areas adjacent to the property. By eliminating curbs or gutters, there are fewer infrastructure costs and higher infiltration rates (PCA, 2021). If curbs cannot be eliminated, then they can sometimes be slotted to re-route runoff to vegetated areas. Existing stormwater infrastructure should be evaluated and expanded if needed (NEMO, 2004). Curbs or gutters that are eliminated in areas that discharge directly to the MS4 system can be considered a Retrofit Project. ### 3.5.2 Permeable Pavement As the Town continues to maintain its properties, permeable paving materials can be utilized during upgrades. Examples of permeable materials include modular concrete paving blocks, modular concrete, plastic lattice, cast-in-place concrete grids, and/or designed permeable pavement. Considerations pertaining to site-specific factors should include "traffic volumes, soil permeability, maintenance, sediment loads, and land use..." (NEMO, 2004). Sites that implement permeable pavements of which were previously directly connected to the Town's MS4 system can be considered a Retrofit Project. #### 4. STORMWATER DISCONNECT TRACKING ## 4.1 Directly Connected Impervious Areas (DCIA) Under the Pollution Prevention/Good Housekeeping portion of the general permit, the Town must develop a retrofit program to disconnect existing DCIA by 1% per year, or a total of 2% to the maximum extent practicable (MEP). *Previous disconnections going back to 2012 can be counted toward this disconnection requirement.* According to the MS4 General Permit, the Town must make a serious attempt to comply with DCIA disconnects. However, based on attenuating factors, including MS4 size, the ability to finance, the capacity to perform operations and maintenance, and local conditions, the MEP may be less than a total of 2% disconnected for the Town. (CTDEEP. 2017) For the purpose of maximum extent practicable (MEP) for the Town, an investigation was conducted by Nathan L. Jacobson & Associates on DCIA for each catchment in the Town. Catchments were defined by utilizing the Town Sub-Basins. High Connectivity, Average Connectivity, Partial Connectivity, and Slight Connectivity were calculated utilizing the following: ## **High Connectivity** DCIA%=0.4*(IA %)^1.2 Directly Connected Area= (DCIA)(IC Acres) **Average Connectivity** DCIA%=0.1*(IA%)^1.5 Directly Connected Area= (DCIA)(IC Acres) Partial Connectivity DCIA%=0.04*(IA%)^1.7 Directly Connected Area= (DCIA)(IC Acres) Slight Connectivity DCIA%=0.01*(IA%)^2.0 Directly Connected Area= (DCIA)(IC Acres) The High Connectivity calculation was utilized in assessing the Town's DCIA connectivity based on the majority of land utilization defined as commercialized or industrial and moderate residential communities,. Based on the calculations provided, the following catchments have a connectivity of 11% or greater. Refer to **Appendix IV** for the Town's complete DCIA Computations. Please note that in all tables henceforth, catchments are organized by drainage waterbodies. Refer to *Section 4.3* for information regarding impaired waters in the Town. **Figures** pertaining to all future sections are located in **Appendix II**. Table 8 - DCIA | Catchment ID | Basin Total
Acreage (Ac.) | Town Town Impervious Area Acreage (Ac) Percentage (%) | | DCIA
Acreage
(High
Connectivity)
(Ac) | DCIA Percentage (High Connectivity) (%) | | | | |---------------|------------------------------|---|-------|---|---|--|--|--| | | Sawmill Brook | | | | | | | | | 4606-00-1 | 659.5 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | 4606-01-1 | 491.8 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | 4606-02-1 | 1,134.6 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | Coginchaug | River | | | | | | | 4607-10-1-L1 | 1,311.6 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | Farm Riv | ver | | | | | | | 5112-00-2-L1 | 344.90 | 3.24 | 2.03 | 0.00 | 0.00 | | | | | 5112-02-1 | 376.5 | 6.61 | 4.28 | 0.00 | 0.00 | | | | | 5112-02-1-D1 | 138.8 | 7.91 | 5.70 | 0.00 | 0.00 | | | | | 5112-02-1-L1 | 455.1 | 7.94 | 9.93 | 0.00 | 0.00 | | | | | 5112-03-1 | 619.4 | 15.92 | 3.09 | 0.00 | 0.00 | | | | | | | Quinnipiac | River | | | | | | | 5200-00-4-L3 | 934.4 | 233.87 | 25.03 | 44.58 | 19.06 | | | | | 5200-00-4-R10 | 675.6 | 253.40 | 37.51 | 78.49 | 30.97 | | | | | 5200-00-4-R11 | 274.4 | 87.51 | 31.89 | 22.31 | 25.50 | | | | | 5200-00-4-R12 | 737.8 | 113.38 | 16.96 | 11.95 | 6.77 | | | | | 5200-00-4-R7 | 2,322.3 | 235.74 | 14.87 | 12.03
 10.21 | | | | | 5200-00-4-R8 | 766.4 | 263.37 | 34.36 | 73.44 | 27.89 | | | | | 5200-10-1 | 1,214.3 | 26.14 | 16.35 | 1.49 | 11.43 | | | | | 5200-10-2-R1 | 528.6 | 176.15 | 33.32 | 47.34 | 26.88 | | | | | 5200-11-1 | 993.9 | 33.01 | 7.20 | 0.00 | 0.00 | | | | | 5200-12-1 | 30.7 | 8.31 | 27.07 | 1.74 | 20.94 | | | | | 5200-12-1-L1 | 1,118.1 | 209.04 | 18.70 | 28.08 | 13.43 | | | | | 5200-13-1 | 1,121.2 | 319.74 | 28.52 | 71.28 | 22.29 | | | | | 5200-14-1 | 416.3 | 84.79 | 20.37 | 12.62 | 14.89 | | | | | 5200-14-1-L1 | 26.4 | 5.93 | 22.46 | 0.99 | 16.74 | | | | | 5200-15-1 | 606.2 | 12.57 | 2.09 | 0.00 | 0.00 | | | | | 5200-16-1 | 1,059.3 | 0.01 | 1.33 | 0.00 | 0.00 | | | | | 5200-17-1 | 1,112.8 | 1.44 | 11.09 | 0.00 | 0.00 | | | | | Catchment ID 5200-19-1-L1 | Basin Total
Acreage (Ac.)
896.3 | Town Impervious Area Acreage (Ac) 6.55 Broad Br | Percentage (%) | DCIA Acreage (High Connectivity) (Ac) 0.86 | DCIA Percentage (High Connectivity) (%) 13.07 | |---------------------------|---------------------------------------|---|----------------|--|---| | 5204-00-2-L1 | 1,884.7 | 29.16 | 8.64 | 0.00 | 0.00 | | 5204-01-1 | 268.5 | 4.37 | 6.93 | 0.23 | 10.53 | | 5204-02-1 | 289.2 | 15.66 | 15.26 | 0.00 | 0.00 | | | | Harbor B | rook | | | | 5206-01-1-L1 | 65.30 | 0.08 | 3.08 | 0.00 | 0.00 | | 5206-02-1-L1 | 681.40 | 49.26 | 25.47 | 9.59 | 19.47 | | | | Wharton E | Brook | | | | 5207-00-1 | 736.5 | 197.50 | 26.82 | 40.90 | 20.71 | | 5207-00-1-L1 | 488.1 | 46.48 | 9.68 | 0.00 | 0.00 | | 5207-00-1-L2 | 1,397.1 | 206.41 | 14.77 | 10.45 | 10.13 | | 5207-00-2-R1 | 380.8 | 100.30 | 26.34 | 20.33 | 20.27 | | 5207-00-2-R2 | 161.2 | 35.31 | 38.63 | 11.33 | 32.09 | | 5207-01-1 | 906.2 | 157.28 | 17.36 | 9.66 | 12.29 | | 5207-02-1 | 2.4 | 0.28 | 20.00 | 0.04 | 14.56 | | 5207-02-1-L1 | 822.4 | 136.05 | 20.66 | 20.60 | 15.14 | | | | Muddy R | liver | | | | 5208-00-1 | 26.0 | 3.70 | 14.23 | 0.18 | 9.68 | | 5208-00-1-L1 | 858.7 | 123.95 | 14.49 | 6.13 | 9.90 | | 5208-00-2-R1 | 54.7 | 7.98 | 14.59 | 0.40 | 9.97 | | 5208-00-3-L2 | 891.4 | 47.21 | 5.30 | 0.00 | 0.00 | | 5208-00-3-L3 | 881.4 | 36.85 | 4.40 | 0.00 | 0.00 | | 5208-00-3-R1 | 12.4 | 0.89 | 7.18 | 0.00 | 0.00 | | 5208-00-3-R2 | 701.2 | 26.46 | 3.81 | 0.00 | 0.00 | | 5208-00-3-R3 | 167.2 | 4.92 | 6.72 | 0.00 | 0.00 | | 5208-00-3-R4 | 28.1 | 0.00 | 0.00 | 0.00 | 0.00 | | 5208-00-3-R5 | 198.4 | 0.15 | 0.67 | 0.00 | 0.00 | | 5208-01-1 | 305.5 | 46.19 | 15.12 | 2.40 | 10.41 | | 5208-02-1 | 510.9 | 8.67 | 1.80 | 0.00 | 0.00 | | 5208-02-1-L1 | 664.2 | 15.25 | 2.31 | 0.00 | 0.00 | | 5208-02-2-R1 | 592.0 | 41.49 | 7.01 | 0.00 | 0.00 | | 5208-03-1 | 717.1 | 36.78 | 6.19 | 0.00 | 0.00 | | 5208-04-1 | 479.6 | 20.43 | 4.26 | 0.00 | 0.00 | | Catchment ID | Basin Total
Acreage (Ac.) | Town
Impervious Area
Acreage (Ac) | Town
Impervious Area
Percentage (%) | DCIA
Acreage
(High
Connectivity)
(Ac) | DCIA Percentage (High Connectivity) (%) | | |-----------------------|------------------------------|---|---|---|---|--| | 5208-05-1-L1 | 540.1 | 56.16 | 10.40 | 0.05 | 17.10 | | | 5208-06-1 | 444.9 | 28.13 | 6.32 | 0.00 | 0.00 | | | 5208-07-1 | 137.2 | 1.83 | 1.33 | 0.00 | 0.00 | | | 5208-08-1 | 840.9 | 73.69 | 8.98 | 0.00 | 0.00 | | | 5208-09-1 | 536.0 | 0.15 | 1.73 | 0.00 | 0.77 | | | | Mill River | | | | | | | 5302-02-1 | 1,077.6 | 64.39 | 9.44 | 0.00 | 0.00 | | | 5302-04-1-L1 | 1,521.3 | 48.01 | 10.26 | 0.00 | 0.00 | | | Source: Created by At | las Technical Consulta | ants (2021). Referenced | from Nathan L. Jacobso | on & Associates DC | IA Calculations. | | ## 4.1.1 Impervious Cover Tracking Existing DCIA by 1% per year, or a total of 2% disconnect to the maximum extent practicable (MEP) is required under the MS4 Permit. A disconnect is defined as infiltrating the first inch of rain. Previous disconnections going back to 2012 can be counted toward this disconnection requirement. Stormwater should not be infiltrated in Aquifer Protection Areas where there is a high pollutant load, at sites with existing subsurface contamination, or a drinking water wellhead area (UCONN, 2020). UConn, along with CT NEMO, have provided a tool- the Impervious Cover Disconnection Spreadsheet-that is useful for DCIA disconnection tracking purposes. Included in the Disconnection Spreadsheet is Project Information, New Developments, Redevelopments, Retrofits, Change, and Cumulative Totals. This spreadsheet will allow the Town to easily track and compute disconnects from the MS4 system during redevelopment or retrofitting, or connections to the MS4 system with new developments. **Graphic 9** provides an example of disconnection tracking. This spreadsheet is included in **Appendix V**. **Example Impervious Cover Tracking Spreadsheet NEMO** Town Uconnopolis Town area (ac): 20,000 PROJECT INFORMATION **CUMULATIVE TOTALS** NOTES & REFERENCES W DEVELOPMEREDEVELOPMENTETROFIT CHANGE Change in Change in Total IC Connecte (ac) d IC (ac) IC TOWN TED IC [ac] (3) Notes & References Townwide BASELINE 17.5% 1800.0 9.00% 0,000 acres] placed old asphalt lot, see file for plai 15-1-A 17.5% 8.97% 3500.0 1794.0 15-1-B project (rain gardens) (0.5 (0.5 17.5% 1793.5 8.97% 21-Jul-1 3500.0 orner of building, draining to RGs Dickson Park basketball ew courts in Stocker Park; western half 3502.0 17.5% 1734.5 8.97% 12-Oct-1 17.5% 8.95% 3503.5 1789.5 15-3 expansion & redevelopment Dieta Auto Parts store (5.0) Section 319 grant for LID upgrade ront walkway and sidewalk; paid for by 17.5% 8.94% 0-Nov-1 15-4 and parking lot) f1.0 [1.0] (L) 3503.5 1788.5 wner to get stormwater fee reductio downtown walking mall rennovation, see file for plans and photos 16-1 Downtown streetscaping 17.5% 2-Apr-10 0.0 (5.5) (5.5 3503.5 1783.0 8.92% Chadwick Courts asphalt parking stalls 17.6% 8.93% nnovation by new owner; ected entire site (applying for LEED Hoffhine Estates Apt. Silver) & removed 1 ac pavement in back 14-May-16 area, bioretention (21.0 (1.0) (21.0 (22.0 3514.5 17.6% 1765.0 8.83% parking lot bioretentior cells (6) agreement with developer to treat half of a 16-4 retrofitting Barrett Blvd sidewalk 17.6% 3-Sep-16 (15.0 1750.0 8.75% (15.0) 3514.5 stalls with bioretention sidewalk put in as per Dowtown 17.6% 2/18/2017 17-1 (new) 0.0 3518.5 Revitalization Plan, porous concrete (see 1750.0 NENNO Project Conter for Land Use Education and Research (CLEAR) University of Connecticus OVERALL NOTES 1 This is just our take on it. Feel free to change and tailor as you see lit. 2 Area unit used is acres but could be anything. 6 serge of #5 shove that are connected 7 for redevelopment projects total is defore project 8 for redevelopment projects total is defor project minus connected is later project minus connected is before project 8 for redevelopment projects connected is after project minus connected is before project 90 changes in total IC after project completion 10 change in connected IC after project completion 12 cumulative total of IC in town, serge 13 cumulative total of IC in town, serge 14 cumulative total of Connected IC in town, serge 15 cumulative total of connected IC in town, serge 15 cumulative total of connected IC in town, serge 16 notes, referrals to other files, plans, photos, folders, etc. **Graphic 9: Impervious Cover Disconnection Spreadsheet** #### 4.2 Urbanized Areas The 2010 Census of Urban Classification defines an Urban Area as "densely developed territory, and encompass [es] residential, commercial, and other non-residential urban land use (Census. 2010)". There are two clearly defined Urban Area types: an Urbanized Area must contain 50,000 or more people, and an Urban Cluster must contain at least 2,500 and less than 50,000 people. (Census. 2010) For purposes of the Stormwater Retrofit Program, data pertaining to an Urbanized Area was utilized. Atlas was provided with a shapefile of the 2010 Urbanized Areas for the Town, which was imported into ArcGIS for calculation purposes. Utilizing the Overlay-Intersect tool, Atlas was able to extract the total Urbanized Area acreage per catchment, and then calculate the Urbanized Area percentage per catchment utilizing the following formula: #### Urbanized Area (Ac)/Basin Total Acreage*100 **Table 9** includes catchments found to contain Urbanized Areas only, as well as the results of the Urbanized Area Acreage extraction and Urbanized Area Percentage results. **Figure 1** depicts the Urbanized Areas and corresponding catchments. Table 9 – Urbanized Areas by Catchment | | Orbanizoa Aro | | | |---------------|------------------------------|------------------------|--| | Catchment ID | Basin Total
Acreage (Ac.) | Urbanized
Area (Ac) | Urbanized
Area
Percentage
(%) | | | Farm Rive | er | | | 5112-00-2-L1 | 344.90 | 39.02 | 11.31 | | 5112-02-1 | 376.5 | 0.20 | 0.05 | | 5112-02-1-L1 | 455.1 | 0.14 | 0.03 | | | Quinnipiac R | liver | | | 5200-00-4-L3 | 934.4 | 934.37 | 100.00 | | 5200-00-4-R10 | 675.6 | 675.64 | 100.01 | | 5200-00-4-R11 | 274.4 | 274.36 | 99.99 | | 5200-00-4-R12 | 737.8 | 635.86 | 86.18 | | 5200-00-4-R7 | 2,322.3 | 1,572.75 | 67.72 | | 5200-00-4-R8 | 766.4 | 766.45 | 100.01 | | 5200-10-1 | 5200-10-1 1,214.3 | | 12.97 | | 5200-10-2-R1 | -2-R1 528.6 | | 100.00 | | 5200-11-1 | 00-11-1 993.9 | | 46.22 | | 5200-12-1 | 30.7 | 30.69 | 99.97 | | 5200-12-1-L1 | 1,118.1 | 1,118.05 | 100.00 | | 5200-13-1 | 1,121.2 | 1,121.18 | 100.00 | | 5200-14-1 | 416.3 | 416.32 | 100.00 | | 5200-14-1-L1 | 26.4 | 26.43 | 100.11 | | 5200-15-1 | 606.2 | 526.82 | 86.91 | | 5200-16-1 | 1,059.3 | 0.64 | 0.06 | | 5200-17-1 | 1,112.8 | 12.24 | 1.10 | | 5200-19-1-L1 | 896.3 | 374.92 | 41.83 | | | Broad Bro | ok | | | 5204-00-2-L1 | 1,884.7
| 342.66 | 18.18 | | 5204-01-1 | 268.5 | 28.13 | 10.48 | | 5204-02-1 | 289.2 | 230.32 | 79.64 | | | Harbor Bro | ok | | | 5206-01-1-L1 | 65.30 | 2.73 | 4.18 | | 5206-02-1-L1 | 681.40 | 189.83 | 27.86 | | | Wharton Bro | ook | | | 5207-00-1 | 736.5 | 736.49 | 100.00 | | 5207-00-1-L1 | 488.1 | 484.20 | 99.20 | | 5207-00-1-L2 | 1,397.1 | 1,397.11 | 100.00 | | 5207-00-2-R1 | 380.8 | 380.84 | 100.01 | | 5207-00-2-R2
5207-01-1 | Basin Total
Acreage (Ac.) | Urbanized
Area (Ac)
89.59
819.99 | Urbanized
Area
Percentage
(%)
55.58 | |---------------------------|------------------------------|---|---| | 5207-01-1 | 2.4 | 1.39 | 57.92 | | 5207-02-1-L1 | 822.4 | 651.76 | 79.25 | | 3207-02-1-L1 | Muddy Riv | | 10.20 | | 5208-00-1 | 26.0 | 25.97 | 99.88 | | 5208-00-1-L1 | 858.7 | 810.15 | 94.35 | | 5208-00-2-R1 | 54.7 | 54.71 | 100.02 | | 5208-00-3-L2 | 891.4 | 148.75 | 16.69 | | 5208-00-3-L3 | 881.4 | 219.21 | 24.87 | | 5208-00-3-R2 | 701.2 | 2.99 | 0.43 | | 5208-00-3-R3 | 167.2 | 67.25 | 40.22 | | 5208-00-3-R4 | 28.1 | 0.88 | 3.13 | | 5208-00-3-R5 | 198.4 | 22.60 | 11.39 | | 5208-01-1 | 305.5 | 305.50 | 100.00 | | 5208-02-2-R1 | 592.0 | 347.38 | 58.68 | | 5208-03-1 | 717.1 | 38.25 | 5.33 | | 5208-05-1-L1 | 540.1 | 323.32 | 59.86 | | 5208-06-1 | 444.9 | 129.99 | 29.22 | | 5208-08-1 | 840.9 | 794.03 | 94.43 | | 5208-09-1 | 536.0 | 7.49 | 1.40 | | | Mill River | <u>r</u> | | | 5302-02-1 | 1,077.6 | 670.90 | 62.26 | | 5302-04-1-L1 | 1,521.3 | 393.13 | 25.84 | # 4.3 Impaired Waterbodies CT ECO, a partnership between the CTDEEP and UConn, has based the state's impaired waters on the following specifications; waters listed as impaired by the EPA and waters that were listed as having adopted a Total Maximum Daily Load (TMDL) for either one or all of the following: phosphorus, nitrogen, bacteria, or mercury. These were then combined into a Stormwater Impaired Waters layer through CT ECO for the use in a GIS system. Utilizing the 2020 CT Stormwater Impaired Waters shapefile, Atlas was able to identify impaired waters that directly flow through the Town. The Quinnipiac River, Meetinghouse Brook, Wharton Brook, an unnamed tributary to Wharton Brook, and the Muddy River were all identified with impairments. Catchments containing the aforementioned impaired waters are listed in **Table 10**, below. **Figure 2** depicts the locations of the impaired waters and associated catchments. Table 10 -Catchments Containing Impaired Waterbodies | Catchment
ID | Basin
Total
Acreage
(Ac.) | Town
Impervious
Acreage
(AC) | Town
Impervious
Area
Percentage
(%) | Impaired
Waterbody | Location | |-------------------|------------------------------------|---------------------------------------|---|---|--| | | | | Quinnipiac Ri | ver | | | 5200-00-4-L3 | 934.4 | 233.87 | 25.03 | Quinnipiac River
(North
Haven/Meriden)-02 | Toelles Road crossing (head of
tide, just east Route 15),
Wallingford/North Haven town
border, US to Hanover Pond
outlet dam, Meriden. (Segment
includes Community Lake
portion) | | 5200-00-4-
R10 | 675.6 | 253.40 | 37.51 | Quinnipiac River
(North
Haven/Meriden)-02 | Toelles Road crossing (head of
tide, just east Route 15),
Wallingford/North Haven town
border, US to Hanover Pond
outlet dam, Meriden. (Segment
includes Community Lake
portion) | | 5200-00-4-
R11 | 274.4 | 87.51 | 31.89 | Quinnipiac River
(North
Haven/Meriden)-02 | Toelles Road crossing (head of
tide, just east Route 15),
Wallingford/North Haven town
border, US to Hanover Pond
outlet dam, Meriden. (Segment
includes Community Lake
portion) | | 5200-00-4-
R12 | 737.8 | 113.38 | 16.96 | Quinnipiac River
(North
Haven/Meriden)-02 | Toelles Road crossing (head of
tide, just east Route 15),
Wallingford/North Haven town
border, US to Hanover Pond
outlet dam, Meriden. (Segment
includes Community Lake
portion) | | 5200-00-4-R7 | 2,322.3 | 235.74 | 14.87 | Quinnipiac River
(North
Haven/Meriden)-02 | Toelles Road crossing (head of
tide, just east Route 15),
Wallingford/North Haven town
border, US to Hanover Pond
outlet dam, Meriden. (Segment
includes Community Lake
portion) | | 5200-00-4-R8 | 766.4 | 263.37 | 34.36 | Quinnipiac River
(North
Haven/Meriden)-02 | Toelles Road crossing (head of
tide, just east Route 15),
Wallingford/North Haven town
border, US to Hanover Pond
outlet dam, Meriden. (Segment
includes Community Lake
portion) | | 5200-00-4-R9 | | | | Quinnipiac River
(North
Haven/Meriden)-02 | Toelles Road crossing (head of
tide, just east Route 15),
Wallingford/North Haven town
border, US to Hanover Pond
outlet dam, Meriden. (Segment
includes Community Lake
portion) | | 5200-10-1 | 1,214.3 | 26.14 | 16.35 | Meetinghouse
Brook (Wallingford)-
01 | Mouth on Quinnipiac River, at
Route 68 crossing, US to
confluence with Spruce Glen | | Catchment
ID | Basin
Total
Acreage
(Ac.) | Town
Impervious
Acreage
(AC) | Town
Impervious
Area
Percentage
(%) | Impaired
Waterbody | Location | |-----------------|------------------------------------|---------------------------------------|---|---|---| | | | | | | Brook, parallel to Route 15,
Wallingford. | | 5200-10-2-R1 | 528.6 | 176.15 | 33.32 | Meetinghouse
Brook (Wallingford)-
01 | Mouth on Quinnipiac River, at
Route 68 crossing, US to
confluence with Spruce Glen
Brook, parallel to Route 15,
Wallingford. | | 5200-13-1 | 1,121.2 | 319.74 | 28.52 | Quinnipiac River
(North
Haven/Meriden)-02 | Toelles Road crossing (head of
tide, just east Route 15),
Wallingford/North Haven town
border, US to Hanover Pond
outlet dam, Meriden. (Segment
includes Community Lake
portion) | | | | | Wharton Bro | ok | | | 5207-00-1 | 736.5 | 197.50 | 26.82 | Wharton Brook-01 | From mouth at confluence with
Quinnipiac River (DS of Route 5
and Railroad crossing),
Wallingford/North Haven town
borders, US to Simpson Pond
outlet dam (US of Center Street
(Route 150) crossing),
Wallingford. | | 5207-00-1-L2 | 1,397.1 | 206.41 | 14.77 | Wharton Brook-02 | From inlet to Simpson Pond, US to North Farms Reservoir outlet dam (just US of Church Street (Route 68) crossing), Wallingford. | | 5207-00-2-R1 | 380.8 | 100.30 | 26.34 | Wharton Brook-01 | From mouth at confluence with
Quinnipiac River (DS of Route 5
and Railroad crossing),
Wallingford/North Haven town
borders, US to Simpson Pond
outlet dam (US of Center Street
(Route 150) crossing),
Wallingford. | | 5207-00-2-R2 | 161.2 | 35.31 | 38.63 | Wharton Brook-01 | From mouth at confluence with
Quinnipiac River (DS of Route 5
and Railroad crossing),
Wallingford/North Haven town
borders, US to Simpson Pond
outlet dam (US of Center Street
(Route 150) crossing),
Wallingford. | | 5207-01-1 | 906.2 | 157.28 | 17.36 | Unnamed Tributary
to Wharton Brook
(Wallingford)-01 | Mouth at confluence with Wharton Brook, just DS of Reskin Drive crossing (off of Pond Hill Road), US to confluence with another unnamed trib, just US of Route 150 crossing and between Airline Road and I91, Wallingford. | | 5207-02-1-L1 | 822.4 | 136.05 | 20.66 | Allen Brook
(Wallingford)-02 | Inlet to Allen Brook Pond in
Wharton Brook State Park
which includes swimming area | | Catchment
ID | Basin
Total
Acreage
(Ac.) | Town
Impervious
Acreage
(AC) | Town
Impervious
Area
Percentage
(%) | Impaired
Waterbody | Location | |-----------------|------------------------------------|---------------------------------------|---|----------------------------------|--| | | | | | | (south exit 13 on/off ramp, I91),
Wallingford/North Haven town
border, US to HW (under I91,
parallel along east side of I91
and west side RR track),
Wallingford. | | | | | Muddy Rive | er | | | 5208-00-3-L3 | 881.4 | 36.85 | 4.40 | Muddy River (North
Haven)-02a | Muddy River Pond inlet (east side of 191), North Haven, US to confluence with unnnamed tributary (outlet for Tamarac Swamp), just DS of Tyler Mill Road crossing, Wallingford. | | 5208-00-3-R1 | 12.4 | 0.89 | 7.18 | Muddy River
(Wallingford)-02b | From confluence with unnnamed tributary (outlet for Tamarac Swamp), just DS of Tyler Mill Road crossing, Wallingford, US to MacKenzie Reservoir outlet dam (US of Northford Road crossing), Wallingford. | | 5208-00-3-R2 | 701.2 | 26.46 | 3.81 | Muddy River
(Wallingford)-02b | From confluence with unnnamed tributary (outlet for Tamarac Swamp), just DS of Tyler Mill Road crossing, Wallingford, US to MacKenzie Reservoir outlet dam (US of Northford Road crossing), Wallingford. | | 5208-00-3-R3 | 167.2 | 4.92 | 6.72 | Muddy River (North
Haven)-02a | Muddy River Pond inlet (east side of I91), North Haven, US to confluence with unnnamed tributary (outlet for Tamarac Swamp), just DS of Tyler Mill Road crossing, Wallingford. |
Source: Created by Atlas (2021). # 4.4 Catchment Priority Rankings Based on current investigatory results, High Priority areas are focused along the western and southwestern side of the Town, extending eastwards. One "finger"-like High Priority protrusion extends from the central portion to the northeastern edge of the Town. The High Priority areas in the Town are a mixture of residential, industrial or commercial, and some agricultural land. Most High Priority areas in the Town include several outfalls, however not all discharge to impaired waterbodies. Multiple factors were taken into consideration when scoring each catchment, including but not limited to DCIA calculations, previous screening results, age of development/structures, density of generating sites, nearby sewer repairs, urbanized areas, and impaired waterbodies. Refer to **Table 11** below for a list of the Town's High and Problem catchments.* **Figure 3** depicts the location of the Town's High, Problem, and Low Priority Catchment Ranking. **Table 11 – High Priority and Problem Catchments** | Catchment ID | Number of Outfalls
Included | Priority Ranking
Low Priority: 0-5
Problem: 6-9
High Priority: ≥10 | |---------------|--------------------------------|---| | | Farm River | | | 5112-00-2-L1 | 2 | Problem | | 5112-02-1 | 4 | Problem | | 5112-02-1-D1 | 0 | Low Priority | | 5112-02-1-L1 | 0 | Low Priority | | 5112-03-1 | 1 | Problem | | | Quinnipiac River | | | 5200-00-4-L3 | 49 | Problem | | 5200-00-4-R10 | 45 | High Priority | | 5200-00-4-R11 | 20 | Problem | | 5200-00-4-R12 | 27 | High Priority | | 5200-00-4-R7 | 84 | High Priority | | 5200-00-4-R8 | 81 | High Priority | | 5200-10-1 | 14 | High Priority | | 5200-10-2-R1 | 69 | High Priority | | 5200-11-1 | 15 | High Priority | | 5200-12-1 | 2 | High Priority | | 5200-12-1-L1 | 49 | High Priority | | 5200-13-1 | 62 | High Priority | | 5200-14-1-L1 | 3 | Problem | | 5200-15-1 | 34 | Problem | | | Harbor Brook | | | 5206-02-1-L1 | 6 | High Priority | | | Wharton Brook | | | 5207-00-1 | 44 | High Priority | | 5207-00-1-L2 | 66 | High Priority | | 5207-00-2-R1 | 11 | High Priority | | 5207-00-2-R2 | 9 | High Priority | | 5207-01-1 | 46 | High Priority | | 5207-02-1 | 0 | Problem | | 5207-02-1-L1 | 47 | High Priority | | | Muddy River | | | Catchment ID | Number of Outfalls
Included | Priority Ranking
Low Priority: 0-5
Problem: 6-9
High Priority: ≥10 | |--------------|--------------------------------|---| | 5208-00-1 | 1 | Problem | | 5208-00-1-L1 | 74 | Problem | | 5208-00-2-R1 | 5 | Problem | | 5208-00-3-L3 | 11 | High Priority | | 5208-00-3-R2 | 0 | Problem | | 5208-00-3-R3 | 3 | High Priority | | 5208-00-3-R4 | 3 | High Priority | | 5208-00-3-R5 | 0 | Problem | | 5208-01-1 | 0 | Problem | | 5208-02-2-R1 | 8 | Problem | | 5208-05-1-L1 | 1 | Problem | | 5208-06-1 | 10 | Problem | | 5208-08-1 | 11 | Problem | | | Mill River | | | 5302-02-1 | 0 | Problem | | 5302-04-1-L1 | 16 | High Priority | Source: Created by Atlas Technical Consultants (2021) ^{*}Exempt and Low Priority Catchments are not included in this table. For a complete list of the Priority Catchment Rankings and factors applied in scoring, refer to **Appendix VI**. #### 5. RETROFIT PLANNING According to the MS4 General Permit, "By the end of this permit term, the permittee shall commence the implementation of the retrofit projects identified in subparagraph (b)...with a goal of disconnecting one percent (1%) per year of the permittee's DCIA for the fourth and fifth years of this general permit, or a total of 2%, to the MEP. The two percent (2%) goal may be achieved by compiling the total disconnected DCIA tracked...or the retrofit projects designated...or a combination of the two" (CTDEEP. 2017). If the two percent (2%) goal will not be met, then the MEP standard shall be utilized. The Town must make a serious attempt to comply with DCIA disconnects. However, based on attenuating factors, including MS4 size, the ability to finance, the capacity to perform operations and maintenance, and local conditions, the MEP may be less than a total of 2% disconnected for the Town. (CTDEEP, 2017). Following the fifth year of the MS4 Permit, the Town will continue the Retrofit Program with a goal to disconnect one percent (1%) of DCIA each year thereafter (CTDEEP, 2017). Section 5.1 details Town-owned facilities, as well as parks and conservation areas located through the Town. **Figure 4** depicts the location of the aforementioned locations. ## 5.1 Municipal Owned Facilities and Parks Town owned or operated properties, parks, and other facilities are the recommended focus for the initial Retrofit Project planning. By controlling the point or non-point source pollutions at municipal-owned properties, the Town can implement control practices and pollution prevention, most of which are non-structural and require minimal or no land area. In addition, by implementing control practices and pollution prevention, the Town will contribute to public education and outreach (UCONN, 2004). As specified in Section 6 (H)(ii) in the MS4 Permit, for impaired waters where bacteria is a POC, the Town shall develop, fund, implement, and prioritize a Retrofit Project to correct bacterial contribution to impaired waterbodies. Atlas will continue to investigate and develop recommendations for Retrofit Projects pertaining to dog parks, parks with open water, sites with failing septic systems, etc., that will contribute to source management of bacterial contribution. **Table 12** details Town-owned facilities, parks, and/or conservation areas owned by other investors. Locations shaded brown signify sites under investigation. As these sites are investigated, Atlas will submit addendums to the Town pertaining to the updated information. Table 12 - Municipal Owned | Title | Location | Acres | Year
Built | Utilization or
Land Class | Current Infrastructures | |-------|-------------------|-------|---------------|------------------------------|-------------------------| | | 98 NICHOLAS
RD | 0.26 | | MUNICIPAL
M96 | | | Title | Location | Acres | Year
Built | Utilization or
Land Class | Stormwater
Flow ¹ | Current Infrastructures | |----------------------------------|------------------------|-------|---------------|------------------------------|---|---| | | 1448 TUTTLE
AVE | 1.88 | | MUNICIPAL
M96 | | | | | 4
SCHOOLHOUSE
RD | 2.02 | | MUNI LAND
M00 | | | | | 131 CHESHIRE
RD | 19.9 | | MUNI LAND
M00 | | | | | 136 CHESHIRE
RD | 29.8 | | MUNI LAND
M00 | | | | | CHESHIRE RD | 16.74 | | MUNI LAND
M00 | | | | | 291 HALL AVE | 11.6 | | MUNI LAND
M00 | | | | Wallingford
Fire
Marshall | 75 MASONIC
AVE | 2.6 | TBD | MUN FIRE | Stormwater across this site is generally flat, with a slope towards the east-northeast. A catch basin is located on the eastern side of the site, connecting to the MS4. It is presumed that due to the flat roof on the main building, drains are utilized and directly connected to the MS4. It is also presumed that stormwater runoff from the other outbuildings runs off the pitched roofs and directly onto paved areas. The neighboring site to the west is steeply sloped an agricultural. | Roof drains, catch
basins, unknown if
there is an oil water
separator located
onsite. | | Wallingford
Compost
Center | 157 JOHN ST | | TBD | TBD | The site is relatively flat, with slopes towards the west- | Slope, catch basins | | Title | Location | Acres | Year
Built | Utilization or
Land Class | Stormwater
Flow ¹ | Current Infrastructures | |------------------------------------|-------------------------|--------|---------------|------------------------------|--|--------------------------| | | | | | | southwest. Stormwater is either infiltrated into the ground, or directed through catch basins or impermeable material to an outfall. | | | Wallingford
Recycling
Center | 25 PENT RD | | TBD | TBD | Topography at
the site is
relatively flat,
with a slope
towards the
north-northeast
Stormwater is
directed to
catch basins
through slope
and/or gutters. | Catch basins,
gutters | | | 287 HALL AVE | 175.88 | | MUNI LAND
M00 | | | | | 115 HOSFORD
ST | 0.17 | | MUNI LAND
M00 | | | | | 302
WASHINGTON
ST | 4.94 | | MUNICIPAL
M94 | | | | | 320
WASHINGTON
ST | 2.03 | | MIXED USE
M96 | | | | | 12 LAKE ST | 1.65 | | MUNICIPAL
M01 | | | | | 590 NORTH
MAIN ST | 0.48 | | MUNI LAND
M00 | | | | | 79
MAPLEWOOD
AVE | 0.56 | | MUNI LAND
M00 | | | | | 42 SUNRISE CIR | 2.93 | | MUNICIPAL
M96 | | | | | FARM HILL RD | 0.06 | | MUNICIPAL
M96 | | | | | HILLHOUSE
AVE | 1.03 | | MUNI LAND
M00 | | | | | WILLIAMS RD
REAR | 1.43 | | MUNICIPAL
M96 | | | | Title | Location | Acres | Year
Built | Utilization or
Land Class | Stormwater
Flow ¹ | Current
Infrastructures | |-----------------------------------|------------------------|-------|---------------|------------------------------
---|----------------------------| | | 491 WILLIAMS
RD | 35 | | MUNI LAND
M00 | | | | | DIBBLE EDGE
RD | 10.83 | | MUNI LAND
M00 | | | | | 114 DIBBLE
EDGE RD | 2.77 | | MUNI LAND
M00 | | | | | 118 DIBBLE
EDGE RD | 2.74 | | MUNI LAND
M00 | | | | | 112 DIBBLE
EDGE RD | 3.13 | | MUNI LAND
M00 | | | | Cook Hill
Elementary
School | 57 HALL RD | 0 | | MUN FIRE | Topography across the site is generally flat, with the property sloping towards the southeast, east, and north. Stormwater on buildings is presumed to flow into roof drains and directly to the MS4 system. Stormwater is expected to flow across paved areas, where curbing directs stormwater into catch basins. | Roof drains, catch basins | | | 5 DOUGLAS CT | 0.1 | | MUNI LAND
M00 | | | | | 128
ALGONQUIN
DR | 0.34 | | MUNI LAND
M00 | | | | | 345
QUINNIPIAC ST | 13.96 | | INDUSTRIAL
M96 | | | | | 358 HALL AVE | 13.96 | | INDUSTRIAL
M96 | | | | | 358 HALL AVE | 13.96 | | INDUSTRIAL
M96 | | | | | 10 CHESHIRE
RD | 45.23 | | MUNICIPAL
M96 | | | | Title | Location | Acres | Year
Built | Utilization or
Land Class | Stormwater
Flow ¹ | Current
Infrastructures | |--|--------------------------|--------|---------------|------------------------------|--|------------------------------| | | 33 NORTH
CHERRY ST | 0.33 | | REST/CLUBS
M94 | | | | | 120 HALL AVE | 0.45 | | MUNI LAND
M00 | | | | | 87 QUINNIPIAC
ST | 0.53 | | MUNI LAND
M00 | | | | | 51 QUINNIPIAC
ST | 0.67 | | MUNICIPAL
M94 | | | | | 20 WILLIAM ST | 0.16 | | MUNI LAND
M00 | | | | | 15 MEADOW
ST | 0.36 | | MUNI LAND
M00 | | | | | 6 MEADOW ST | 0.21 | | MUNI LAND
M00 | | | | | 200 NORTH
MAIN ST | 3.61 | | MUNICIPAL
M94 | | | | Moses Y
Beach
Elementary
School | 340 NORTH
MAIN ST | 7.16 | | MUN PUB SC
M94 | Topography across the site slopes towards the southwest and west. Curbed, paved areas direct stormwater runoff into catch basins located throughout the site. It is presumed that roof drains direct stormwater into the MS4 system. | Roof drains, catch
basins | | | 105 NORTH
BRANFORD RD | 378.68 | | MUNI LAND
M00 | | | | | 105 NORTH
BRANFORD RD | 378.68 | | MUNI LAND
M00 | | | | | 237 COOK HILL
RD | 0.53 | | MUNI LAND
M00 | | | | | 154 COOK HILL
RD | 0.06 | | MUNICIPAL
M96 | | | | | 4 SOUTH ST | 9.29 | | MUNI LAND
M00 | | | | Title | Location | Acres | Year
Built | Utilization or
Land Class | Stormwater
Flow ¹ | Current Infrastructures | |-------|--------------------------|-------|---------------|------------------------------|---------------------------------|-------------------------| | | 260
QUINNIPIAC ST | 1.41 | | MUNI LAND
M00 | | | | | 45 SOUTH
MAIN ST | 2.13 | | MUNICIPAL
M94 | | | | | 23 NORTH
ORCHARD ST | 0.17 | | MUNI LAND
M00 | | | | | 1 CENTER ST | 9.69 | | MUNICIPAL
M96 | | | | | 37
WASHINGTON
ST | 0.63 | | MUNI LAND
M00 | | | | | 390 CENTER ST | 0.12 | | MUNI LAND
M00 | | | | | 11 WALLACE
AVE | 0.1 | | MUNI LAND
M00 | | | | | 29 WALLACE
AVE | 0.54 | | MUNI LAND
M00 | | | | | 45 WALLACE
AVE | 0.72 | | MUNI LAND
M00 | | | | | 135 NORTH
MAIN ST | 0.57 | | MUNI LAND
M00 | | | | | 43 WALLACE
AVE | 1 | | MUNICIPAL
M94 | | | | | 95 NORTH
MAIN ST | 0.26 | | MUN FIRE | | | | | 121 NORTH
MAIN ST | 0.82 | | MUN POLICE | | | | | BURKE
HEIGHTS DR | 0.06 | | MUNI LAND
M00 | | | | | 9 OLD ROCK
HILL RD | 43.01 | | MUNI LAND
M00 | | | | | 910 OLD ROCK
HILL RD | 14.72 | | MUN PUB SC
M94 | | | | | 14 CHERYL AVE | 0.24 | | Single Family | | | | | 300 NORTH
BRANFORD RD | 34.88 | | MUNI LAND
M00 | | | | | 1 ASHLEY LN | 0.94 | | Mun Pump Hse | | | | | 90 APPLE TREE
LN | 0.32 | | MUNI LAND
M00 | | | | Title | Location | Acres | Year
Built | Utilization or
Land Class | Stormwater
Flow ¹ | Current Infrastructures | |-------|--------------------------|-------|---------------|------------------------------|---------------------------------|-------------------------| | | 84 SOUTH
TURNPIKE RD | 0.14 | | MUNI LAND
M00 | | | | | 51 JOHN ST | 1.07 | | MUNICIPAL
M96 | | | | | 228 EAST ST | 0.12 | | MUNI LAND
M00 | | | | | 100 JOHN ST | 2.94 | | MUNICIPAL
M94 | | | | | 78 SOUTH ELM
ST | 14.24 | | MUNI LAND
M00 | | | | | 78 SOUTH ELM
ST | 14.24 | | MUNI LAND
M00 | | | | | 748 CENTER ST | 0.29 | | MUNI LAND
M00 | | | | | CENTER ST | 0.41 | | MUNI LAND
M00 | | | | | CENTER ST | 0.44 | | MUNI LAND
M00 | | | | | 37 BURKE
HEIGHTS DR | 5.31 | | HSNG AUTH
M94 | | | | | 1222 OLD
COLONY RD | 0.35 | | Mun Res Lnd | | | | | 296 NORTH
BRANFORD RD | 0.21 | | MUNI LAND
M00 | | | | | 75 NORTH
BRANFORD RD | 57.3 | | MUNICIPAL
M96 | | | | | 129 SOUTH
TURNPIKE RD | 0.3 | | MUNICIPAL
M96 | | | | | 13 MANSION
RD | 3.44 | | MUNI LAND
M00 | | | | | 3 OLIVER
CREEK RD | 20 | | MUNI LAND
M00 | | | | | 5 PENT RD | 0.23 | | MUNICIPAL
M96 | | | | | 349 SOUTH
ELM ST | 0.03 | | MUNI LAND
M00 | | | | | 23 TREMPER
DR | 0.25 | | Single Family | | | | Title | Location | Acres | Year
Built | Utilization or
Land Class | Stormwater
Flow ¹ | Current Infrastructures | |-------|--------------------------------|--------|---------------|------------------------------|---------------------------------|-------------------------| | | 3
LONDONDERRY
DR | | | Unknown | | | | | 995C EAST
CENTER ST | 93.72 | | MUNI LAND
M00 | | | | | EAST CENTER
ST | 45.02 | | MUNI LAND
M00 | | | | | 1070 EAST
CENTER ST | 10.92 | | MUNI LAND
M00 | | | | | 1299 SCARD
RD | 26.15 | | MUNI LAND
M00 | | | | | WHIRLWIND
HILL RD | 2.88 | | MUNI LAND
M00 | | | | | 1200 SCARD
RD | 4.49 | | MUNI LAND
M00 | | | | | 1250 SCARD
RD | 0.78 | | MUNI LAND
M00 | | | | | 1351 SCARD
RD | 12.79 | | MUNI LAND
M00 | | | | | 1364 SCARD
RD | 37.75 | | MUNI LAND
M00 | | | | | 40 GEORGE
WASHINGTON
TRL | 9.31 | | MUNI LAND
M00 | | | | | 80 WHARTON
BROOK DR | 3.11 | | MUNI LAND
M00 | | | | | 36 RESKIN DR | 2.88 | | MUNI LAND
M00 | | | | | 611 SOUTH
ELM ST | 6.2 | | MUNI LAND
M00 | | | | | 97 KONDRACKI
LN | 1.83 | | MUNI LAND
M00 | | | | | EAST CENTER
ST | 116.27 | | MUNI LAND
M00 | | | | | EAST CENTER
ST | 38.82 | | MUNI LAND
M00 | | | | | 70 TYLER MILL
RD | 0.06 | | MUNI LAND
M00 | | | | Title | Location | Acres | Year
Built | Utilization or
Land Class | Stormwater
Flow ¹ | Current Infrastructures | |-------|------------------------------|-------|---------------|------------------------------|---------------------------------|-------------------------| | | 11
NORTHFORD
RD | 0.42 | | MUNI LAND
M00 | | | | | 32
NORTHFORD
RD | 57.92 | | MUNICIPAL
M96 | | | | | EAST CENTER
ST | 0.95 | | MUNI LAND
M00 | | | | | 1390
WHIRLWIND
HILL RD | 63.41 | | MUNICIPAL
M01 | | | | | 28A CARDINAL
DR | 3 | | MUNI LAND
M00 | | | | | 14A POGMORE
DR | 1.06 | | MUN PUB SC
M00 | | | | | 35 TAMARAC
SWAMP RD | 28.58 | | MUNI LAND
M00 | | | | | 70 TAMARAC
SWAMP RD | 25.22 | | MUNI LAND
M00 | | | | | 22 TAMARAC
SWAMP RD | 2.6 | | MUNI LAND
M00 | | | | | 21 TYLER MILL
RD | 6.69 | | MUNI LAND
M00 | | | | | 1675
WHIRLWIND
HILL RD | 192 | | MUNICIPAL
M96 | | | | | 15 BIRCH DR | 3.49 | | MUNI LAND
M00 | | | | | TYLER MILL RD | 0 | | Unknown | | | | | 75 TYLER MILL
RD | 2.64 | | Single Family | | | | | 80 TYLER MILL
RD | 3.05 | | MUN PUB SC
M00 | | | | | 41 TYLER MILL
RD | 4.64 | | MUNI LAND
M00 | | | | | 63 TYLER MILL
RD | 8.45 | | MUNI LAND
M00 | | | | | 31 TYLER MILL
RD | 5.73 | | MUNI LAND
M00 | | | | Title | Location | Acres | Year
Built | Utilization or
Land Class | Stormwater
Flow ¹ | Current
Infrastructures | |-----------------------------------|-------------------------------|--------|---------------|------------------------------|---|----------------------------| | | COOKE RD | 80 | | MUNI LAND
M00 | | | | | 237R POND
HILL RD | | | Unknown | | | | Pond Hill
Elementary
School | 299 POND HILL
RD | 9.44 | | MUN PUB SC
M94 | Topography slopes to the southeast at this site, with steep slopes on the northeast, northwest, and southeast corners. Stormwater in contact with buildings is presumed to flow into roof drains connected to the MS4. Stormwater runs along paved areas and curbing into catch basins throughout the site. | Roof drains, catch basins | | | 14 HAYLEDGE
CT | 1.97 | | MUNI LAND
M00 | | | | | TYLER MILL RD | 0 | | Unknown | | | | | 200
NORTHFORD
RD | 105.1 | | MUNI LAND
M00 | | | | | 116 WEST
DAYTON HILL
RD | 73.73 | | MUNI LAND
M00 | | | | | 549
WOODHOUSE
AVE | 723.38 | | MUNI LAND
M00 | | | | | WILDLIFE DR | 0.4 | | MUNICIPAL
M96 | | | | | TYLER MILL RD | 0 | | Unknown | | | | | 118 WEST
DAYTON HILL
RD | 2.2 | | MUNI LAND
M00 | | | | Title | Location | Acres | Year
Built | Utilization or Land Class | Stormwater
Flow ¹ |
Current
Infrastructures | |-------|-----------------------------|-------|---------------|---------------------------|---------------------------------|----------------------------| | | 37 OAK ST
YALES | 29.31 | | MUNICIPAL
M96 | | | | | 50 OAK ST | 29.31 | | MUNI LAND | | | | | YALES | 0.41 | | M00 | | | | | 15 OLD
COLONY RD | 3.02 | | MUNICIPAL
M96 | | | | | 1110 YALE AVE | 0.5 | | MUNI LAND
M00 | | | | | 13 PARTRIDGE
RUN | 0.74 | | MUNI LAND
M00 | | | | | SHARON DR
(REAR) | 0.17 | | MUNICIPAL
M96 | | | | | 415 CHURCH
ST YALESVILLE | 6.84 | | MUN PUB SC
M94 | | | | | 980 NORTH
MAIN ST EXT | 0.55 | | MUNICIPAL
M96 | | | | | TOWER DR | 0.91 | | Mun Pump Hse | | | | | 130 THORPE
AVE | 1.67 | | MUNICIPAL
M96 | | | | | 16 DONAT DR | 8 | | MUNI LAND
M00 | | | | | 21 RIDGEFIELD
RD | 0.14 | | MUNI LAND
M00 | | | | | 141 HOPE HILL
RD | 40.31 | | MUN PUB SC
M94 | | | | | 143 HOPE HILL
RD | 0.92 | | MUN FIRE | | | | | 140 HOPE HILL
RD | 44.46 | | MUN PUB SC
M94 | | | | | 200 HIGHLAND
AVE | 13.99 | | MUN PUB SC
M94 | | | | | 326 MAIN ST | 0.16 | | MUNI LAND
M00 | | | | | MAIN ST | 13.23 | | MUNI LAND
M00 | | | | | 361 MAIN ST | 0.07 | | MUNI LAND
M00 | | | | | MAIN ST | 9.32 | | MUNI LAND
M00 | | | | Title | Location | Acres | Year
Built | Utilization or
Land Class | Stormwater
Flow ¹ | Current Infrastructures | |-------|------------------------|-------|---------------|------------------------------|---------------------------------|-------------------------| | | 6 FAIRFIELD
BLVD | 3.79 | | MUNICIPAL
M94 | | | | | 3 CARPENTER
LN | 1 | | MUNI LAND
M00 | | | | | 218 HIGH HILL
RD | 94.2 | | MUNI LAND
M00 | | | | | 30 RIDGENOLL
RD | 3.73 | | MUNI LAND
M00 | | | | | 33 RIDGENOLL
RD | 0.23 | | MUNI LAND
M00 | | | | | 58 RIDGEFIELD
RD | 5.54 | | MUNI LAND
M00 | | | | | 101
RIDGEWOOD
RD | 0.08 | | MUNI LAND
M00 | | | | | 67
RIDGEWOOD
RD | 3.62 | | MUNI LAND
M00 | | | | | 11 RIDGELAND
RD | 0.09 | | MUNI LAND
M00 | | | | | 75 JENNA RD | 4.96 | | MUNI LAND
M00 | | | | | 205 MAIN ST | 20.16 | | MUNI LAND
M00 | | | | | 202 MAIN ST | 28.69 | | MUNI LAND
M00 | | | | | 864 NORTH
FARMS RD | 10.29 | | MUNI LAND
M00 | | | | | 1211 BARNES
RD | 2.44 | | MUNI LAND
M00 | | | | | CT ROUTE 68 | 0.26 | | MUNI LAND
M00 | | | | | WISK-KEY
WIND RD | 5.42 | | MUNI LAND
M00 | | | | | 162 HIGH HILL
RD | 53.1 | | MUNI LAND
M00 | | | | | GAYLORD
FARM RD | 2.4 | | MUNI LAND
M00 | | | | Title | Location | Acres | Year
Built | Utilization or
Land Class | Stormwater
Flow ¹ | Current
Infrastructures | |-------|--------------------------|-------|---------------|------------------------------|---------------------------------|----------------------------| | | 30 PARKER
FARMS RD | 20 | | MUN PUB SC
M94 | | | | | 60 PARKER
FARMS RD | 1 | | Vacant Unb Lnd | | | | | 99 NORTH
TURNPIKE RD | 0.44 | | MUNI LAND
M00 | | | | | 91 NORTH
TURNPIKE RD | 18.43 | | MUNI LAND
M00 | | | | | 109 NORTH
TURNPIKE RD | 0.07 | | MUNI LAND
M00 | | | | | 107 NORTH
TURNPIKE RD | 1.86 | | MUNICIPAL
M96 | | | | | 155 GRIEB RD | 7.19 | | MUNI LAND
M00 | | | | | 2 CATLIN RD | 0.91 | | MUNI LAND
M00 | | | | | 243 GRIEB RD | 0.39 | | MUNI LAND
M00 | | | | | 1 GRIEB RD | 0.59 | | MUNICIPAL
M96 | | | | | 1300 BARNES
RD | 2.25 | | MUNI LAND
M00 | | | | | 159 CHESHIRE
RD | 21 | | MUNI LAND
M00 | | | | | TUTTLE AVE | 0.46 | | MUNI LAND
M00 | | | | | 18 MOHICAN
LN | 4.04 | | MUNI LAND
M00 | | | | | 29 TOWN
FARM RD | 7.05 | | MUNICIPAL
M94 | | | | | 700 NORTH
MAIN ST EXT | 15.44 | | MUNI LAND
M00 | | | | | 739 NORTH
MAIN ST EXT | 7.1 | | MUNICIPAL
M96 | | | | | 1207 DURHAM
RD | 0.06 | | MUNI LAND
M00 | | | | | 47 GRIEB TRL | 0.1 | | MUNI LAND
M00 | | | | Title | Location | Acres | Year
Built | Utilization or
Land Class | Stormwater
Flow ¹ | Current Infrastructures | |-------|--------------------------|--------|---------------|------------------------------|---------------------------------|-------------------------| | | 14 CARTER TRL | 0.31 | | MUNI LAND
M00 | | | | | 531 NORTH
BRANFORD RD | 67.78 | | MUNI LAND
M00 | | | | | 98 NICHOLAS
RD | | | MUNICIPAL
M96 | | | | | 98 NICHOLAS
RD | 0.26 | | MUNICIPAL
M96 | | | | | 1448 TUTTLE
AVE | 1.88 | | MUNI LAND
M00 | | | | | 4
SCHOOLHOUSE
RD | 2.02 | | MUNI LAND
M00 | | | | | 131 CHESHIRE
RD | 19.9 | | MUNI LAND
M00 | | | | | 136 CHESHIRE
RD | 29.8 | | MUNI LAND
M00 | | | | | CHESHIRE RD | 16.74 | | MUNI LAND
M00 | | | | | 291 HALL AVE | 11.6 | | MUN FIRE | | | | | 75 MASONIC
AVE | 2.6 | | MUNI LAND
M00 | | | | | 287 HALL AVE | 175.88 | | MUNI LAND
M00 | | | | | 287 HALL AVE | 175.88 | | MUNI LAND
M00 | | | | | 287 HALL AVE | 175.88 | | MUNI LAND
M00 | | | | | 115 HOSFORD
ST | 0.17 | | Unknown | | | | | 302
WASHINGTON
ST | | | MUNICIPAL
M94 | | | | | 302
WASHINGTON
ST | 4.94 | | Unknown | | | | | 302
WASHINGTON
ST | 0 | | MIXED USE
M96 | | | | Title | Location | Acres | Year
Built | Utilization or
Land Class | Stormwater
Flow ¹ | Current Infrastructures | |-------|-------------------------|-------|---------------|------------------------------|---------------------------------|-------------------------| | | 320
WASHINGTON
ST | 2.03 | | MUNICIPAL
M01 | | | | | 12 LAKE ST | 1.65 | | MUNI LAND
M00 | | | | | 590 NORTH
MAIN ST | 0.48 | | MUNI LAND
M00 | | | | | 79
MAPLEWOOD
AVE | 0.56 | | MUNICIPAL
M96 | | | | | 42 SUNRISE CIR | 2.93 | | MUNICIPAL
M96 | | | | | FARM HILL RD | 0.06 | | MUNI LAND
M00 | | | | | HILLHOUSE
AVE | 1.03 | | MUNICIPAL
M96 | | | | | WILLIAMS RD
REAR | 1.43 | | MUNI LAND
M00 | | | | | 491 WILLIAMS
RD | 35 | | MUNI LAND
M00 | | | | | DIBBLE EDGE
RD | 10.83 | | MUNI LAND
M00 | | | | | 114 DIBBLE
EDGE RD | 2.77 | | MUNI LAND
M00 | | | | | 118 DIBBLE
EDGE RD | 2.74 | | MUNI LAND
M00 | | | | | 112 DIBBLE
EDGE RD | 3.13 | | MUN FIRE | | | | | 37 HALL RD | 0 | | MUNI LAND
M00 | | | | | 5 DOUGLAS CT | 0.1 | | MUNI LAND
M00 | | | | | 128
ALGONQUIN
DR | 0.34 | | INDUSTRIAL
M96 | | | | | 345
QUINNIPIAC ST | 13.96 | | INDUSTRIAL
M96 | | | | | 358 HALL AVE | 13.96 | | INDUSTRIAL
M96 | | | | Title | Location | Acres | Year
Built | Utilization or
Land Class | Stormwater
Flow ¹ | Current
Infrastructures | |-------|--------------------------|--------|---------------|------------------------------|---------------------------------|----------------------------| | | 358 HALL AVE | 13.96 | | MUNICIPAL
M96 | | | | | 10 CHESHIRE
RD | 45.23 | | REST/CLUBS
M94 | | | | | 33 NORTH
CHERRY ST | 0.33 | | MUNI LAND
M00 | | | | | 120 HALL AVE | 0.45 | | MUNI LAND
M00 | | | | | 87 QUINNIPIAC
ST | 0.53 | | MUNICIPAL
M94 | | | | | 51 QUINNIPIAC
ST | 0.67 | | MUNI LAND
M00 | | | | | 20 WILLIAM ST | 0.16 | | MUNI LAND
M00 | | | | | 15 MEADOW
ST | 0.36 | | MUNI LAND
M00 | | | | | 6 MEADOW ST | 0.21 | | MUNICIPAL
M94 | | | | | 200 NORTH
MAIN ST | 3.61 | | MUN PUB SC
M94 | | | | | 340 NORTH
MAIN ST | 7.16 | | MUNI LAND
M00 | | | | | 105 NORTH
BRANFORD RD | 378.68 | | MUNI LAND
M00 | | | | | 105 NORTH
BRANFORD RD | 378.68 | | MUNI LAND
M00 | | | | | 237 COOK HILL
RD | 0.53 | | MUNICIPAL
M96 | | | | | 154 COOK HILL
RD | 0.06 | | MUNI LAND
M00 | | | | | 4 SOUTH ST | 9.29 | | MUNI LAND
M00 | | | | | 260
QUINNIPIAC ST | 1.41 | | MUNICIPAL
M94 | | | | | 45 SOUTH
MAIN ST | 2.13 | | MUNI LAND
M00 | | | | | 23 NORTH
ORCHARD ST | 0.17 | | MUNICIPAL
M96 | | | | Title | Location | Acres | Year
Built | Utilization or Land Class | Stormwater
Flow ¹ | Current
Infrastructures | |-------|--------------------------|-------|---------------|---------------------------|---------------------------------|----------------------------| | | 1 CENTER ST | 9.69 | | MUNI LAND
M00 | | | | | 37
WASHINGTON
ST | 0.63 | | MUNI LAND
M00 | | | | | 390 CENTER ST | 0.12 | | MUNI LAND
M00 | | | | | 11 WALLACE
AVE | 0.1 | | MUNI LAND
M00 | | | | | 29 WALLACE
AVE | 0.54 | | MUNI LAND
M00 | | | | | 45 WALLACE
AVE | 0.72 | | MUNI LAND
M00 | | | | | 135 NORTH
MAIN ST | 0.57 | | MUNICIPAL
M94 | | | | | 43 WALLACE
AVE | 1 | | MUN FIRE | | | | | 95 NORTH
MAIN ST | 0.26 | | MUN POLICE | | | | | 121 NORTH
MAIN ST | 0.82 | | MUNI LAND
M00 | | | | | BURKE
HEIGHTS DR | 0.06 | | MUNI LAND
M00 | | | | | 9 OLD ROCK
HILL RD | 43.01 | | MUN PUB SC
M94 | | | | | 910 OLD ROCK
HILL RD | 14.72 | | Single Family | | | | | 14 CHERYL AVE | 0.24 | | MUNI LAND
M00 | | | | | 300 NORTH
BRANFORD RD | 34.88 | | Mun Pump Hse | | | | | 1 ASHLEY LN | 0.94 | | MUNI LAND
M00 | | | | | 90 APPLE TREE
LN | 0.32 | | MUNI LAND
M00 | | | | | 84 SOUTH
TURNPIKE RD | 0.14 | | MUNICIPAL
M96 | | | | | 51 JOHN ST | 1.07 | | MUNI LAND
M00 | | | | Title | Location | Acres | Year
Built | Utilization or Land Class | Stormwater
Flow ¹ | Current Infrastructures | |-------|--------------------------|-------|---------------|---------------------------|---------------------------------|-------------------------| | | 228 EAST ST | 0.12 | | MUNICIPAL
M94 | | | | | 220 EA31 31 | 0.12 | | MUNI LAND | | | | | 100 JOHN ST | 2.94 | | M00 | | | | | 78 SOUTH ELM
ST | 14.24 | | MUNI LAND
M00 | | | | | 78 SOUTH ELM
ST | 14.24 | | MUNI LAND
M00 | | | | | 748 CENTER ST | 0.29 | | MUNI LAND
M00 | | | | | CENTER ST | 0.41 | | MUNI LAND
M00 | | | | | CENTER ST | 0.44 | | HSNG AUTH
M94 | | | | | 37 BURKE
HEIGHTS DR | 5.31 | | Mun Res Lnd | | | | | 1222 OLD
COLONY RD | 0.35 | | MUNI LAND
M00 | | | | | 296 NORTH
BRANFORD RD | 0.21 | |
MUNICIPAL
M96 | | | | | 75 NORTH
BRANFORD RD | 57.3 | | MUNICIPAL
M96 | | | | | 129 SOUTH
TURNPIKE RD | 0.3 | | MUNI LAND
M00 | | | | | 13 MANSION
RD | 3.44 | | MUNI LAND
M00 | | | | | 3 OLIVER
CREEK RD | 20 | | MUNICIPAL
M96 | | | | | 5 PENT RD | 0.23 | | MUNI LAND
M00 | | | | | 349 SOUTH
ELM ST | 0.03 | | Single Family | | | | | 23 TREMPER
DR | 0.25 | | Unknown | | | | | 3
LONDONDERRY
DR | | | MUNI LAND
M00 | | | | | 995C EAST
CENTER ST | 93.72 | | MUNI LAND
M00 | | | | Title | Location | Acres | Year
Built | Utilization or
Land Class | Stormwater
Flow ¹ | Current Infrastructures | |-------|--------------------------------|--------|---------------|------------------------------|---------------------------------|-------------------------| | | EAST CENTER
ST | 45.02 | | MUNI LAND
M00 | | | | | 1070 EAST
CENTER ST | 10.92 | | MUNI LAND
M00 | | | | | 1299 SCARD
RD | 26.15 | | MUNI LAND
M00 | | | | | WHIRLWIND
HILL RD | 2.88 | | MUNI LAND
M00 | | | | | 1200 SCARD
RD | 4.49 | | MUNI LAND
M00 | | | | | 1250 SCARD
RD | 0.78 | | MUNI LAND
M00 | | | | | 1351 SCARD
RD | 12.79 | | MUNI LAND
M00 | | | | | 1364 SCARD
RD | 37.75 | | MUNI LAND
M00 | | | | | 40 GEORGE
WASHINGTON
TRL | 9.31 | | MUNI LAND
M00 | | | | | 80 WHARTON
BROOK DR | 3.11 | | MUNI LAND
M00 | | | | | 36 RESKIN DR | 2.88 | | MUNI LAND
M00 | | | | | 611 SOUTH
ELM ST | 6.2 | | MUNI LAND
M00 | | | | | 97 KONDRACKI
LN | 1.83 | | MUNI LAND
M00 | | | | | EAST CENTER
ST | 116.27 | | MUNI LAND
M00 | | | | | EAST CENTER
ST | 38.82 | | MUNI LAND
M00 | | | | | 70 TYLER MILL
RD | 0.06 | | MUNI LAND
M00 | | | | | 11
NORTHFORD
RD | 0.42 | | MUNICIPAL
M96 | | | | | 32
NORTHFORD
RD | 57.92 | | MUNI LAND
M00 | | | | Title | Location | Acres | Year
Built | Utilization or
Land Class | Stormwater
Flow ¹ | Current
Infrastructures | |-------|------------------------------|-------|---------------|------------------------------|---------------------------------|----------------------------| | | EAST CENTER
ST | 0.95 | | MUNICIPAL
M01 | | | | | 1390
WHIRLWIND
HILL RD | 63.41 | | MUNI LAND
M00 | | | | | 28A CARDINAL
DR | 3 | | MUN PUB SC
M00 | | | | | 14A POGMORE
DR | 1.06 | | MUNI LAND
M00 | | | | | 35 TAMARAC
SWAMP RD | 28.58 | | MUNI LAND
M00 | | | | | 70 TAMARAC
SWAMP RD | 25.22 | | MUNI LAND
M00 | | | | | 22 TAMARAC
SWAMP RD | 2.6 | | MUNI LAND
M00 | | | | | 21 TYLER MILL
RD | 6.69 | | MUNICIPAL
M96 | | | | | 1675
WHIRLWIND
HILL RD | 192 | | MUNI LAND
M00 | | | | | 15 BIRCH DR | 3.49 | | Unknown | | | | | TYLER MILL RD | 0 | | Single Family | | | | | 75 TYLER MILL
RD | 2.64 | | MUN PUB SC
M00 | | | | | 80 TYLER MILL
RD | 3.05 | | MUNI LAND
M00 | | | | | 41 TYLER MILL
RD | 4.64 | | MUNI LAND
M00 | | | | | 63 TYLER MILL
RD | 8.45 | | MUNI LAND
M00 | | | | | 31 TYLER MILL
RD | 5.73 | | MUNI LAND
M00 | | | | | COOKE RD | 80 | | Unknown | | | | | 237R POND
HILL RD | | | MUN PUB SC
M94 | | | | | 299 POND HILL
RD | 9.44 | | MUNI LAND
M00 | | | | | 14 HAYLEDGE
CT | 1.97 | | Unknown | | | | Title | Location | Acres | Year
Built | Utilization or
Land Class | Stormwater
Flow ¹ | Current Infrastructures | |-------|-------------------------------|--------|---------------|------------------------------|---------------------------------|-------------------------| | | TYLER MILL RD | 0 | | MUNI LAND
M00 | | | | | 200
NORTHFORD
RD | 105.1 | | MUNI LAND
M00 | | | | | 116 WEST
DAYTON HILL
RD | 73.73 | | MUNI LAND
M00 | | | | | 549
WOODHOUSE
AVE | 723.38 | | MUNICIPAL
M96 | | | | | WILDLIFE DR | 0.4 | | Unknown | | | | | TYLER MILL RD | 0 | | MUNI LAND
M00 | | | | | 118 WEST
DAYTON HILL
RD | 2.2 | | MUNICIPAL
M96 | | | | | 37 OAK ST
YALES | 29.31 | | MUNI LAND
M00 | | | | | 50 OAK ST
YALES | 0.41 | | MUNICIPAL
M96 | | | | | 15 OLD
COLONY RD | 3.02 | | MUNI LAND
M00 | | | | | 1110 YALE AVE | 0.5 | | MUNI LAND
M00 | | | | | 13 PARTRIDGE
RUN | 0.74 | | MUNICIPAL
M96 | | | | | SHARON DR
(REAR) | 0.17 | | MUN PUB SC
M94 | | | | | 415 CHURCH
ST YALESVILLE | 6.84 | | MUNICIPAL
M96 | | | | | 980 NORTH
MAIN ST EXT | 0.55 | | Mun Pump Hse | | | | | TOWER DR | 0.91 | | MUNICIPAL
M96 | | | | | 130 THORPE
AVE | 1.67 | | MUNI LAND
M00 | | | | | 16 DONAT DR | 8 | | MUNI LAND
M00 | | | | Title | Location | Acres | Year
Built | Utilization or
Land Class | Stormwater
Flow ¹ | Current
Infrastructures | |-------|------------------------|-------|---------------|------------------------------|---------------------------------|----------------------------| | | 21 RIDGEFIELD
RD | 0.14 | | MUN PUB SC
M94 | | | | | 141 HOPE HILL
RD | 40.31 | | MUN FIRE | | | | | 143 HOPE HILL
RD | 0.92 | | MUN PUB SC
M94 | | | | | 140 HOPE HILL
RD | 44.46 | | MUN PUB SC
M94 | | | | | 200 HIGHLAND
AVE | 13.99 | | MUNI LAND
M00 | | | | | 326 MAIN ST | 0.16 | | MUNI LAND
M00 | | | | | MAIN ST | 13.23 | | MUNI LAND
M00 | | | | | 361 MAIN ST | 0.07 | | MUNI LAND
M00 | | | | | MAIN ST | 9.32 | | MUNICIPAL
M94 | | | | | 6 FAIRFIELD
BLVD | 3.79 | | MUNI LAND
M00 | | | | | 3 CARPENTER
LN | 1 | | MUNI LAND
M00 | | | | | 218 HIGH HILL
RD | 94.2 | | MUNI LAND
M00 | | | | | 30 RIDGENOLL
RD | 3.73 | | MUNI LAND
M00 | | | | | 33 RIDGENOLL
RD | 0.23 | | MUNI LAND
M00 | | | | | 58 RIDGEFIELD
RD | 5.54 | | MUNI LAND
M00 | | | | | 101
RIDGEWOOD
RD | 0.08 | | MUNI LAND
M00 | | | | | 67
RIDGEWOOD
RD | 3.62 | | MUNI LAND
M00 | | | | | 11 RIDGELAND
RD | 0.09 | | MUNI LAND
M00 | | | | Title | Location | Acres | Year
Built | Utilization or Land Class | Stormwater
Flow ¹ | Current
Infrastructures | |-------|--------------------------|-------|---------------|---------------------------|---------------------------------|----------------------------| | | 75 JENNA RD | 4.96 | | MUNI LAND
M00 | | | | | 205 MAIN ST | 20.16 | | MUNI LAND
M00 | | | | | 202 MAIN ST | 28.69 | | MUNI LAND
M00 | | | | | 864 NORTH
FARMS RD | 10.29 | | MUNI LAND
M00 | | | | | 1211 BARNES
RD | 2.44 | | MUNI LAND
M00 | | | | | CT ROUTE 68 | 0.26 | | MUNI LAND
M00 | | | | | WISK-KEY
WIND RD | 5.42 | | MUNI LAND
M00 | | | | | 162 HIGH HILL
RD | 53.1 | | MUNI LAND
M00 | | | | | GAYLORD
FARM RD | 2.4 | | MUN PUB SC
M94 | | | | | 30 PARKER
FARMS RD | 20 | | Vacant Unb Lnd | | | | | 60 PARKER
FARMS RD | 1 | | MUNI LAND
M00 | | | | | 99 NORTH
TURNPIKE RD | 0.44 | | MUNI LAND
M00 | | | | | 91 NORTH
TURNPIKE RD | 18.43 | | MUNI LAND
M00 | | | | | 109 NORTH
TURNPIKE RD | 0.07 | | MUNICIPAL
M96 | | | | | 107 NORTH
TURNPIKE RD | 1.86 | | MUNI LAND
M00 | | | | | 155 GRIEB RD | 7.19 | | MUNI LAND
M00 | | | | | 2 CATLIN RD | 0.91 | | MUNI LAND
M00 | | | | | 243 GRIEB RD | 0.39 | | MUNICIPAL
M96 | | | | | 1 GRIEB RD | 0.59 | | MUNI LAND
M00 | | | | Title | Location | Acres | Year
Built | Utilization or
Land Class | Stormwater
Flow ¹ | Current
Infrastructures | |----------------------------------|--------------------------|-------|---------------|------------------------------|--|--| | | 1300 BARNES
RD | 2.25 | | MUNI LAND
M00 | | | | | 159 CHESHIRE
RD | 21 | | MUNI LAND
M00 | | | | | TUTTLE AVE | 0.46 | | MUNI LAND
M00 | | | | | 18 MOHICAN
LN | 4.04 | | MUNICIPAL
M94 | | | | Department
of Public
Works | 29 TOWN
FARM RD | 7.05 | | MUNI LAND
M00 | Topography across the site is generally flat, with a gentle slope in a north-northeasterly direction. Stormwater runoff is directed to catch basins, where it eventually discharges to an unnamed stream to the north. | Oil/Water
Separator, catch
basins. | | | 700 NORTH
MAIN ST EXT | 15.44 | | MUNICIPAL
M96 | | | | | 739 NORTH
MAIN ST EXT | 7.1 | | MUNI LAND
M00 | | | | | 1207 DURHAM
RD | 0.06 | | MUNI LAND
M00 | | | | | 47 GRIEB TRL | 0.1 | | MUNI LAND
M00 | | | | | 14 CARTER TRL | 0.31 | | MUNI LAND
M00 | | | | | 531 NORTH
BRANFORD RD | 67.78 | | MUNICIPAL
M96 | | | Source: Created by Atlas (2021). #### 5.2 Non-Municipal Retrofitting Retrofit Projects can be applied to non-municipal facilities, parks, communities, or other developments, and be counted towards the Town's disconnect percentage. Atlas recommends applying ordinances, post-construction maintenance plans, or other legal regulations associated with the construction, upgrade, and/or rehabilitation of non-Town owned properties to achieve retrofitting. Specific criteria was utilized in defining priority areas for the implementation of non-municipal Retrofit Projects. The criteria utilized in defining priority areas of non-municipal Retrofit Projects included High or Problem catchment priority rankings, catchments containing an impaired waterbody, and catchments identified with an urbanized area. Utilizing ArcGIS, Atlas extracted catchments where two (2) or more of the aforementioned criteria were found. **Table 13** details these catchments, and may act as a guide for the Town to focus non-municipal retrofitting efforts. **Figure 5** depicts the location of the extracted catchments prioritized for non-municipal Retrofit Projects. Table 13 - Non-Municipal Retrofitting | Catchment ID | Total
Acres
(Ac.) | Priority
Ranking | Impaired Waterbody | Urbanized Area Percentage (%) | | | | | | |---------------|-------------------------|---------------------
---|-------------------------------|--|--|--|--|--| | | Quinnipiac River | | | | | | | | | | 5200-00-4-L3 | 934.4 | Problem | Quinnipiac River (North
Haven/Meriden)-02 | 100.00 | | | | | | | 5200-00-4-R10 | 675.6 | High
Priority | Quinnipiac River (North
Haven/Meriden)-02 | 100.00 | | | | | | | 5200-00-4-R11 | 274.4 | Problem | Quinnipiac River (North
Haven/Meriden)-02 | 99.99 | | | | | | | 5200-00-4-R12 | 737.8 | High
Priority | Quinnipiac River (North
Haven/Wallingford)-01 | 86.18 | | | | | | | 5200-00-4-R7 | 2,322.3 | High
Priority | Quinnipiac River (North
Haven/Meriden)-02 | 67.72 | | | | | | | 5200-00-4-R8 | 766.4 | High
Priority | Quinnipiac River (North
Haven/Meriden)-02 | 100.00 | | | | | | | 5200-10-1 | 1,214.3 | High
Priority | Meetinghouse Brook
(Wallingford)-01 | 12.97 | | | | | | | 5200-10-2-R1 | 528.6 | High
Priority | Meetinghouse Brook
(Wallingford)-01 | 100.00 | | | | | | | 5200-13-1 | 1,121.2 | High
Priority | Quinnipiac River (North
Haven/Meriden)-02 | 100.00 | | | | | | | | | Wharton | Brook | | | | | | | | 5207-00-1 | 736.5 | High
Priority | Unnamed Tributary to
Wharton Brook
(Wallingford)-01 | 100.00 | | | | | | | 5207-00-1-L1 | 488.1 | Low Priority | Wharton Brook-02 | 99.20 | | | | | | | 5207-00-1-L2 | 1,397.1 | High
Priority | Wharton Brook-02 | 100.00 | | | | | | | 5207-00-2-R1 | 380.8 | High
Priority | Allen Brook
(Wallingford/North Haven)-
01 | 100.00 | | | | | | | Catchment ID | Total
Acres
(Ac.) | Priority
Ranking | Impaired Waterbody | Urbanized
Area
Percentage
(%) | |--------------|-------------------------|---------------------|---|--| | 5207-00-2-R2 | 161.2 | High
Priority | Meetinghouse Brook
(Wallingford)-01 | 55.58 | | 5207-01-1 | 906.2 | High
Priority | Unnamed Tributary to
Wharton Brook
(Wallingford)-01 | 90.49 | | 5207-02-1 | 2.4 | Problem | Allen Brook
(Wallingford/North Haven)-
01 | 57.92 | | 5207-02-1-L1 | 822.4 | High
Priority | Allen Brook (Wallingford)-02 | 79.25 | | | | Muddy F | River | | | 5208-00-3-L2 | 891.4 | Low Priority | Muddy River (North Haven)-
02a | 16.69 | | 5208-00-3-L3 | 881.4 | High
Priority | Muddy River (North Haven)-
02a | 24.87 | | 5208-00-3-R2 | 701.2 | Problem | Muddy River (North Haven)-
02a | 0.43 | | 5208-00-3-R3 | 167.2 | High
Priority | Muddy River (North Haven)-
02a | 40.22 | **Source**: Created by Atlas Technical Consultants (2021) #### 5.3 Retrofit Planning The following Retrofit Projects are recommended for implementation by the Town. This Program is ongoing, and is dependent on available information, costs, installation periods, and town-wide discussions. As Retrofit Projects are implemented, the Town should update the Impervious Cover Tracking Spreadsheet, located in **Appendix V**. Atlas will continue to assess and recommend Retrofit Projects for the Town's municipal sites. As these sites are assessed, addendums to **Table 14** will be submitted to the Town. Table 14 - Retrofit Planning | Title | Location(s) | Retrofit(s)
Recommended | Projected Disconnected Area (Ac.) | Cost
Analysis | Projected
Implementation
Date | |----------------------------------|----------------------|--|-----------------------------------|------------------------------|-------------------------------------| | Department
of Public
Works | 29 TOWN
FARM RD | Install rain barrels to catch roof runoff. Utilize runoff to irrigate neighboring baseball fields. | 1.15 | Refer to Section 3.2. | 2022-2025 | | Pond Hill | 299 POND | Install rain barrels or
cistern to catch roof
runoff. Utilize runoff
to water the site's
grassy areas. | 0.91 | Refer to
Section 3.2 | 2022-2025 | | Elementary
School | HILL RD | Remove or slot
curbing to allow for
stormwater
infiltration into
grassy areas. | 1.64 | Refer to
Section
3.5.1 | 2022-2025 | | | | Install rain barrels to catch roof runoff. Utilize runoff to water grassy areas. | 0.33 | Refer to
Section 3.2. | 2022-2025 | | Wallingford
Fire
Marshall | 75
MASONIC
AVE | Remove or slot
curbing to allow for
stormwater
infiltration into
grassy areas. | 1.45 | Refer to
Section
3.5.1 | 2022-2025 | | | | During repaving, redirect MS4 catch basins and associated piping to a bioretention or infiltration basin. | 1.78 | Refer to
Section
3.1.3 | 2022-2025 | | Wallingford | | Remove or slot
curbing to allow for
stormwater
infiltration into
grassy areas. | 1.36 | Refer to
Section
3.5.1 | 2022-2025 | | Recycling
Center | 25 PENT RD | During repaving, redirect MS4 catch basins and associated piping to a bioretention or infiltration basin. | 1.42 | Refer to
Section
3.1.3 | 2022-2025 | | Title | Location(s) | Retrofit(s)
Recommended | Projected
Disconnected
Area (Ac.) | Cost
Analysis | Projected
Implementation
Date | |--|----------------------|---|---|------------------------------|-------------------------------------| | | | During repaving,
redirect MS4 catch
basins and
associated piping to
a bioretention or
infiltration basin. | 3.37 | Refer to
Section
3.1.3 | 2022-2025 | | Cook Hill
Elementary
School 57 HALL RD | 57 HALL RD | Remove or slot
curbing to allow for
stormwater
infiltration into
grassy areas. | 1.91 | Refer to
Section
3.5.1 | 2022-2025 | | | | Install rain barrels to catch roof runoff. Utilize runoff to water grassy areas. | 1.46 | Refer to
Section 3.2 | 2022-2025 | | | | Remove or slot
curbing to allow for
stormwater
infiltration into
grassy areas. | 1.28 | Refer to
Section
3.5.1 | 2022-2025 | | Moses Y
Beach
Elementary | 340 NORTH
MAIN ST | Reroute roof runoff to constructed rain gardens. | 1.03 | Refer to
Section
3.1.4 | 2022-2025 | | School | | Install rain barrels to
catch roof runoff.
Utilize runoff to
water grassy areas
or the neighboring
baseball field. | 1.03 | Refer to
Section 3.2 | 2022-2025 | Source: Created by Atlas 2021. #### APPENDIX I REFERENCES - Connecticut Department of Energy and Environmental Protection (CTDEEP). (2020) *Nitrogen Control Program for Long Island Sound*. Retrieved from https://portal.ct.gov/DEEP/Municipal-Wastewater/Nitrogen-Control-Program-for-Long-Island-Sound. - Connecticut Department of Energy and Environmental Protection: Bureau of Materials Management & Compliance Assurance Water Permitting & Enforcement Division (CTDEEP). (2017) General Permit for the Discharge of Stormwater from Small Municipal Separate Storm Sewer Systems (MS4). DEEP-WPED-GP-021. - Connecticut Department of Environmental Protection (CTDEEP). Connecticut Stormwater Quality Manual (2004). Retrieved from https://portal.ct.gov/-/media/DEEP/water regulating and discharges/stormwater/manual/StormwaterManual Completepdf.pdf. - Connecticut Department of Environmental Protection (CTDEP). (2010) Connecticut's Nitrogen Credit Exchange-An Incentive-based Water Quality Trading Program. Retrieved from https://nationalstormwater.com/wp/wp-content/uploads/2020/08/CT-water quality trading summary 2010.pdf. - CTECO. (2020) Stormwater Impaired Waters 2020. Retrieved from https://cteco.uconn.edu/guides/Stormwater Impaired Waters 2016.htm. - Harper, H., Ph.D., P.E, Environmental Research & Design, Inc. (N.D.) Current Research and Trends in Alum Treatment of Stormwater Runoff. Retrieved from https://stormwater.ucf.edu/fileRepository/docs/chemicaltreatment/documents/CURRENT %20%20RESEARCH%20%20AND%20%20TRENDS.pdf. - Massachusetts Department of Environmental Protection (MADEP). (N.D.) *Sediment Forebays*. Retrieved from https://megamanual.geosyntec.com/npsmanual/sedimentforebays.aspx. - Minnesota Pollution Control Agency (PCA). (2020) Differences between Infiltration Basins and Bioretention Basins. Retrieved from https://stormwater.pca.state.mn.us/index.php/Differences between infiltration basins a nd bioretention basins. - Minnesota Pollution Control Agency (PCA). (2021). Stormwater and Soil, Engineered (Bioretention) Media, and Media Amendments. Retrieved from https://stormwater.pca.state.mn.us/index.php?title=Stormwater and soil, engineered (bioretention) media, and media amendments. - Minnesota Pollution Control Agency (PCA). (N.D.) *Pollution Prevention and the MS4 Program*. Retrieved from https://www.pca.state.mn.us/sites/default/files/wq-strm4-26.pdf. - U.S. EPA Region 5 Great Cities Program: Neighborhood Rain Barrel Partnership Final Project Report. (2008). City of Minneapolis, Minneapolis Department of Public Works Division of Surface Water & Sewers. - U.S. EPA. (2002) *Urban Runoff: Model Ordinances for Aquatic Buffers*. Retrieved from
https://www.epa.gov/nps/urban-runoff-model-ordinances-aquatic-buffers - U.S. EPA. (2021) *Learn About the Clean Water State Revolving Fund (CWSRF)*. Retrieved from https://www.epa.gov/cwsrf/learn-about-clean-water-state-revolving-fund-cwsrf. - UCONN and NEMO. CT Stormwater Quality Manual (2004) Retrieved from https://ctstormwatermanual.nemo.uconn.edu/10-retrofits/. - UCONN CLEAR/NEMO. (2018) Mapping Impervious Cover, presented by Chet Arnold, UConn CLEAR. Retrieved from https://docs.google.com/viewerng/viewer?url=https://nemo.uconn.edu/publications/MS4/MeasuringIC.pdf&hl=en. - UCONN CLEAR/NEMO. (2018) MS4 Mapping Overview, presented by David Dickson, UConn CLEAR. Retrieved from https://docs.google.com/viewerng/viewer?url=https://nemo.uconn.edu/publications/MS4/MapWkshpOverview.pdf&hl=en. - UCONN CLEAR/NEMO. (2021) Stormwater Pond Retrofit Workshop-Retrofit Motivations, Retrofitting Dry Ponds for Volume Reduction & Pollutant Removal, Retrofitting Bioretention for Volume Reduction & Nitrogen Removal, Retrofitting Wet Ponds for Pathogen & Nutrient Removal. William Hunt, Ph.D., North Carolina State University. Presented at the Mystic Marriot, in Groton, Connecticut. - UCONN. (2020) MS4 Disconnection Workshop Series. Workshop retrieved from https://nemo.uconn.edu/ms4/tasks/post-construction.htm. - United States Census Bureau (Census). (2010) 2010 Census Urban and Rural Classification and Urban Area Criteria. Retrieved from https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural/2010-urban-rural.html. - United States Environmental Protection Agency (USEPA). Soil Constraints and Low Impact Development: Careful Planning Helps LID Work in Clay Soils. (2014) - University of Connecticut (UCONN). (2020) Strategies for Disconnection-How to Get Started Unplugging Your Impervious Surfaces. MS4 Disconnection Workshop Series, December 2020. - University of Connecticut Center for Land Use Education and Research's (CLEAR) NEMO Program. (2021). *Rain Gardens: A Design Guide for Connecticut & New England Homeowners*. Retrieved from https://nemo.uconn.edu/raingardens/index.htm. University of Connecticut Center for Land Use Education and Research's (CLEAR) NEMO Program. (2021) Rain Garden App: A Mobile App for designing, installing, and maintaining a Rain Garden. Retrieved from https://nemo.uconn.edu/tools/app/raingarden.htm University of Connecticut Center for Land Use Education and Research's (CLEAR) NEMO Program. (2021) Implementation: Post-Construction Stormwater Management. Retrieved from https://nemo.uconn.edu/ms4/tasks/post-construction.htm. # APPENDIX II FIGURES Fig No. 2 Drawn By: KLL Checked by: LRW Date: 2021 290 Roberts Street Suite 301 East Hartford,CT 06108 Fig No. 3 Drawn By: KLL Checked by: LRW Date: 2021 290 Roberts Street Suite 301 East Hartford,CT 06108 # APPENDIX III BUFFER ORDIANCE TEMPLATE #### **Aquatic Buffer Model Ordinance** This ordinance focuses primarily on stream buffers. Communities creating coastal buffers may wish to incorporate additional features. For an example of a coastal buffer ordinance, see the Rhode Island ordinance. #### Background Section I. Buffers adjacent to stream systems and coastal areas provide numerous environmental protection and resource management benefits that can include the following: - 1) Restoring and maintaining the chemical, physical, and biological integrity of the water resources - 2) Removing pollutants delivered from urban stormwater - 3) Reducing erosion and sediment entering the stream - 4) Stabilizing stream banks - 5) Providing infiltration of stormwater runoff - 6) Maintaining base flow of streams - 7) Contributing the organic matter that is a source of food and energy for the aquatic - 8) Providing tree canopy to shade streams and promote desirable aquatic organisms This benefit applies primarily to forested buffer systems. In some communities, such as prairie settings, the native vegetation may not be forest. See the example ordinance from Omaha, Nebrăska, for an example. | | , | | 0 1 | wildlife habit
value and re | | opportunity | / | | | | |---------|--|-----------------------------------|---|---|--|---|------------|--------------|--|-------| | | mainta
the es | in the na
tablishm | ative vegeta
ent, protect | ation in riparia
tion, and mai
urisdictional a | an and wetl
ntenance o | and areas | by impler | nenting spe | ecifications | for | | Section | The publifiers to protect resour (Juriso | to prote
ect the v
ces with | ect the strea
vater quality
in
riparian an | ance is to est
ams, wetland
y of watercound
ad aquatic eco
's (jurisdiction | s, and flood
Irses, reser
(jurisdiction
Osystems; a | Iplains of _voirs, lake); to protection | s, and oth | er significa | (<i>jurisdic</i>
nt water
<u>'s</u> | tion) | | | | <u>Definit</u> | The area | of the stream
one and a ha | | | | | | | below the floodplain. Best Management Practices (BMPs) Conservation practices or management measures that control soil loss and reduce water quality degradation caused by nutrients, animal wastes, toxics, sediment, and runoff. Buffer A vegetated area, including trees, shrubs, and herbaceous vegetation, that exists or is established to protect a stream system, lake, reservoir, or coastal estuarine area. Alteration of this natural area is strictly limited. #### Development - 1) The improvement of property for any purpose involving building - 2) Subdivision or the division of a tract or parcel of land into two or more parcels - 3) The combination of any two or more lots, tracts, or parcels of property for any purpose - 4) The preparation of land for any of the above purposes #### Nontidal Wetlands Those areas not influenced by tidal fluctuations that are inundated or saturated by surface water or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. The definition of "nontidal wetland" here is adapted from the definition of "wetland" used by the USEPA and the US Army Corps of Engineers. ### Nonpoint Source Pollution Pollution that is generated by various land use activities rather than from an identifiable or discrete source and is conveyed to waterways through natural processes, such as rainfall, stormwater runoff, or groundwater seepage rather than direct discharges. ## One Hundred-Year Floodplain The area of land adjacent to a stream that is subject to inundation during a storm event that has a recurrence interval of 100 years. #### Pollution Any contamination or alteration of the physical, chemical, or biological properties of any waters that will render the waters harmful or detrimental to - 1) Public health, safety, or welfare - 2) Domestic, commercial, industrial, agricultural, recreational, or other legitimate beneficial uses - 3) Livestock, wild animals, or birds - 4) Fish or other aquatic life #### Stream Channel Part of a watercourse either naturally or artificially created that contains an intermittent or perennial base flow of groundwater origin. Base flows of groundwater origin can be distinguished by any of the following physical indicators: - 1) Hydrophytic vegetation, hydric soil, or other hydrologic indicators in the area(s) where groundwater enters the stream channel in the vicinity of the stream headwaters, channel bed, or channel banks - 2) Flowing water not directly related to a storm event - 3) Historical records of a local high groundwater table, such as well and stream gauge records. #### Stream Order A classification system for streams based on stream hierarchy. The smaller the stream, the lower its numerical classification. For example, a first-order stream does not have tributaries and normally originates from springs and/or seeps. (See Figure 1.) Stream System A stream channel together with one or both of the following: - 1) 100-year floodplain - 2) Hydrologically related nontidal wetland **Streams** Perennial and intermittent watercourses identified through site inspection and US Geological Survey (USGS) maps. Perennial streams are those which are depicted on a USGS map with a solid blue line. Intermittent streams are those which are depicted on a USGS map with a dotted blue line. Defining the term "stream" is perhaps the most contentious issue in the definition of stream buffers. This term determines the origin and the length of the stream buffer. Although some jurisdictions restrict the buffer to perennial or "blue line" streams, others include both perennial and intermittent streams in the stream buffer program. Some communities do not rely on USGS maps and instead prepare local maps of all stream systems that require a buffer. Water Pollution A land use or activity that causes a relatively high risk of potential
water pollution. Hazard #### Section IV. <u>Applications</u> - A) This ordinance shall apply to all proposed development except for that development which meets waiver or variance criteria as outlined in Section IX of this regulation. - B) This ordinance shall apply to all timber harvesting activities, except those timber harvesting operations which are implementing a forest management plan that has been deemed to be in compliance with the regulations of the buffer ordinance and has received approval from ______(state forestry agency). - C) This ordinance shall apply to surface mining operations except that the design standards shall not apply to active surface mining operations that are operating in compliance with an approved ______(state or federal agency) surface mining permit. - D) The ordinance shall not apply to agricultural operations that are covered by an approved Natural Resources Conservation Service (NRCS) conservation plan that includes the application of BMPs. Communities should carefully consider whether exempt agricultural operations from the buffer ordinance because buffer regulations may take land out of production and impose a financial burden on family farms. Many communities exempt agricultural operations if they have an approved NRCS conservation plan. In some regions, agricultural buffers may be funded through the Conservation Reserve Program (CRP). For further information, consult the Conservation Technology Information Center (CTIC) at www.ctic.perdue.edu. Livestock operations near and around streams may be regulated by communities. Livestock can significantly degrade the stream system and accelerate streambank erosion. The King County Livestock Management Ordinance is one example of a local livestock ordinance. For more information, contact the King County Department of Development and Environmental Services at (206) 296-6602. E) Except as provided in Section IX, this ordinance shall apply to all parcels of land, structures, and activities that are causing or contributing to - 1) Pollution, including nonpoint source pollution, of the waters of the jurisdiction adopting this ordinance - 2) Erosion or sedimentation of stream channels - 3) Degradation of aquatic or riparian habitat #### Section V. <u>Plan Requirements</u> - A) In accordance with Section IV of this ordinance, a plan approved by the appropriate agency is required for all development, forest harvesting operations, surface mining operations, and agricultural operations. - B) The plan shall set forth an informative, conceptual, and schematic representation of the proposed activity by means of maps, graphs, charts, or other written or drawn documents so as to enable the agency an opportunity to make a reasonably informed decision regarding the proposed activity. - C) The plan shall contain the following information: The ordinance can identify the scale of maps to be included with the analyses in items 2) through - 7). A 1"=50' to 1"=100' scale will generally provide sufficient detail. - 1) A location or vicinity map - 2) Field-delineated and surveyed streams, springs, seeps, bodies of water, and wetlands (include a minimum of 200 feet into adjacent properties) - 3) Field delineated and surveyed forest buffers - 4) Limits of the ultimate 100-year floodplain The limits of the ultimate floodplain (i.e., the floodplain under "built-out" conditions) might not be available in all locations. - 5) Hydric soils mapped in accordance with the NRCS soil survey of the site area - 6) Steep slopes greater than 15 percent for areas adjacent to and within 200 feet of streams, wetlands, or other waterbodies The ordinance may also explicitly define how slopes are measured. For example, the buffer may be divided into sections of a specific width (e.g., 25 feet) and the slope for each segment reported. Alternatively, slopes can be reported in segments divided by breaks in slope. - 7) A narrative of the species and distribution of existing vegetation within the buffer - D) The buffer plan shall be submitted in conjunction with the required grading plan for any development, and the forest buffer should be clearly delineated on the final grading plan. - E) Permanent boundary markers, in the form of signage approved by _______(natural resources or planning agency), shall be installed prior to final approval of the required clearing and grading plan. Signs shall be placed at the edge of the middle zone (See Section VI.I). #### Section VI. <u>Design Standards for Forest Buffers</u> A) A forest buffer for a stream system shall consist of a forested strip of land extending along both sides of a stream and its adjacent wetlands, floodplains, or slopes. The forest buffer width shall be adjusted to include contiguous sensitive areas, such as steep slopes or erodible soils, where development or disturbance may adversely affect water quality, streams, wetlands, or other waterbodies. - B) The forest buffer shall begin at the edge of the stream bank of the active channel. - C) The required width for all forest buffers (i.e., the base width) shall be a minimum of 100 feet, with the requirement to expand the buffer depending on - 1) Stream order - 2) Percent slope - 3) 100-year floodplain - 4) Wetlands or critical areas The width of the stream buffer varies from 20 feet to 200 feet in ordinances throughout the United States (Heraty, 1993). The width chosen by a jurisdiction will depend on the sensitivity and characteristics of the resource being protected and the political realities in the community. - B) In third-order and higher streams, 25 feet shall be added to the base width of the forest buffer. - C) The forest buffer width shall be modified if steep slopes are within close proximity to the stream and drain into the stream system. In those cases, the forest buffer width may be adjusted. Several methods may be used to adjust buffer width for steep slopes. Two examples ifollow: Method A | Percent | Width of Buffer | |---------|-----------------| | 15%-17% | add 10 feet | | 18%-20% | add 30 feet | | 21%-23% | add 50 feet | | 24%-25% | add 60 feet | #### Method B | | Type of Stream Use | | | | |------------------|-----------------------------------|-----------------------------|--|--| | Percent Slope | Water Contact
Recreational Use | Sensitive
Stream Habitat | | | | 0% to 14% | no change | add 50 feet | | | | 15% to 25% | add 25 feet | add 75 feet | | | | Greater than 25% | add 50 feet | add 100 feet | | | - D) Forest buffers shall be extended to encompass the entire 100-year floodplain and a zone with a minimum width of 25 feet beyond the edge of the floodplain. - E) When wetland or critical areas extend beyond the edge of the required buffer width, the buffer shall be adjusted so that the buffer consists of the extent of the wetland plus a 25-foot zone extending beyond the wetland edge. - H) Water Pollution Hazards The following land uses and/or activities are designated as potential water pollution hazards and must be set back from any stream or waterbody by the distance indicated below: - 1) Storage of hazardous substances—(150 feet) - 2) Aboveground or underground petroleum storage facilities—(150 feet) - 3) Drainfields from onsite sewage disposal and treatment systems (i.e., septic systems)—(100 feet) - 4) Raised septic systems—(250 feet) - 5) Solid waste landfills or junkyards—(300 feet) - 6) Confined animal feedlot operations—(250 feet) - 7) Subsurface discharges from a wastewater treatment plant—(100 feet) - 8) Land application of biosolids—(100 feet) For surface water supplies, the setbacks should be doubled. A community should carefully consider which activities or land uses should be designated as potential water pollution hazards. The list of potential hazards shown above is not exhaustive, and others may need to be added depending on the major pollutants of concern and the uses of water. I) The forest buffer shall be composed of three distinct zones, with each zone having its own set of allowable uses and vegetative targets as specified in this ordinance. (See Figure 2.) Although a three-zone buffer system is highly recommended, the widths and specific uses allowed in each zone may vary between jurisdictions. - I) Zone 1, Streamside Zone - a) Protects the physical and ecological integrity of the stream ecosystem. - b) Begins at the edge of the stream bank of the active channel and extends a minimum of 25 feet from the top of the bank. - c) Allowable uses within this zone are highly restricted to - i) Flood control structures - ii) Utility right of ways - iii) Footpaths - iv) Road crossings, where permitted - d) Target for the streamside zone is undisturbed native vegetation. This ordinance assumes that the native vegetation in the stream corridor is forest. In some regions of the United States, other vegetation such as prairie may be native. See the Omaha, Nebraska, buffer ordinance for an example of a stream buffer ordinance that protects nonforested systems. - 2) Zone 2, Middle Zone - a) Protects key components of the stream and provides distance between upland development and the streamside zone. - b) Begins at the outer edge of the streamside zone and extends a minimum of 50 feet plus any additional buffer width as specified in this section. - c) Allowable uses within the middle zone are restricted to - i) Biking or hiking paths - i) Stormwater management facilities, with the approval of _____ (local agency responsible for stormwater). | | | | iii) Recreational uses as approved byiv) Limited tree clearing with approval from | _ (planning agency).
(forestry agency or | | | |-------------
---|-------------------------|---|--|--|--| | | | d) | planning agency). Targets mature native vegetation adapted to the region. | _ | | | | | 3) Zone 3, Outer Zone a) Prevents encroachment into the forest buffer and filters runoff from resider commercial development. b) Begins at the outward edge of the middle zone and provide a minimum w feet between Zone 2 and the nearest permanent structure. c) Restricts septic systems, permanent structures, or impervious cover, with exception of paths. d) Encourages the planting of native vegetation to increase the total width of | | | | | | | Section VII | l . | | Buffer Management and Maintenance | | | | | | The
ma
alte | e for
ximi
eratio | est buffer, including wetlands and floodplains, shall be managed ze the unique value of these resources. Management includes on of the natural conditions of these resources. The following pratricted within Zones 1 and 2 of the forest buffer, except with apple | specific limitations or actices and activities | | | | | | | forestry, planning or natural resources agency) | | | | | | | | aring of existing vegetation | | | | | | 3) | | I disturbance by grading, stripping, or other practices ing or dumping | | | | | | 4) | Dra | inage by ditching, underdrains, or other systems | | | | | | 5) | nor | e, storage, or application of pesticides, except for spot spraying
n-native species consistent with recommendations of
ency) | | | | | | 6) | Нo | using, grazing, or other maintenance of livestock | | | | | | 7) | Sto | rage or operation of motorized vehicles, except for maintenance | | | | | B) | | e fol | e approved by(forestry, planning, or natural reso
owing structures, practices, and activities are permitted in the for | rest buffer, with | | | | | | | design or maintenance features, subject to the review of | | | | | | (<i>101</i> | | y, planning, or natural resources agency):
ads, bridges, paths, and utilities: | | | | | | ') | a) | An analysis needs to be conducted to ensure that no economi | cally feasible | | | | | | , | alternative is available. | • | | | | | | b) | The right-of-way should be the minimum width needed to allow | for maintenance | | | | | | (د | access and installation. The angle of the crossing shall be perpendicular to the stream | or huffer to minimize | | | | | | c) | The angle of the crossing shall be perpendicular to the stream clearing requirements | or purier to minimize | | | | | | d) | The minimum number of road crossings should be used within and no more than one fairway crossing is allowed for every 1,0 | | | | | | 2) | Str | rmwater management: | oo leet of buller. | | | - Stormwater management: e) An analysis needs to be conducted to ensure that no economically feasible alternative is available and that the project either is necessary for flood control or significantly improves the water quality or habitat in the stream. f) In new developments, onsite and nonstructural alternatives will be preferred over larger facilities within the stream buffer. | | will be limited to the area required for construction and adequate maintenance access as outlined in the most recent edition of (refer to stormwater manual). | |---|---| | B | Rather than placing specific stormwater BMP design criteria in an ordinance, it is often preferable to reference a manual. With this approach, specific design information can be changed over time without going through the formal process needed to change ordinance language. | | | The Maryland Stormwater Design Manual is one example of an up-to-date stormwater design manual. For more information, go to www.mde.state.md.us . Under topics, choose "Stormwater Design Manual." | | | h) Material dredged or otherwise removed from a BMP shall be stored outside the buffer. 3) Stream restoration projects, facilities, and activities approved by | | | _ (forestry, planning, or natural resources agency) are permitted within the forest buffer. 4) Water quality monitoring and stream gauging are permitted within the forest buffer, as approved by | | | which is required to be submitted for approval by (planning board or agency). The covenant shall be recorded in the land records and shall run with the land and continue in perpetuity. | | R | This protective covenant can be kept either by the local government agency responsible for management of environmental resources or by an approved nonprofit organization. An example conservation easement is included later in this section. | | | E) All lease agreements must contain a notation regarding the presence and location of protective covenants for forest buffer areas and shall contain information on the management | | | and maintenance requirements for the new property owner. F) An offer of dedication of a forest buffer area to the agency shall not be interpreted to mean that this automatically conveys to the general public the right of access to this area. G) (responsible individual or group) shall inspect the buffer annually and immediately following severe storms for evidence of sediment deposition, erosion, or | | | concentrated flow channels and corrective actions taken to ensure the integrity and functions | of the forest buffer. A local ordinance will need to designate the individual or group responsible for buffer maintenance. Often, the responsible party will be identified in protective covenants associated with the property. Explicit forestry management criteria are often included in a forestry or natural resources conservation ordinance. An example forest conservation ordinance from Frederick County, Maryland is included in the miscellaneous ordinances section of this site. #### Section VIII. <u>Enforcement Procedures</u> - A) ______ (*director of responsible agency*) or his/her designee is authorized and empowered to enforce the requirements of this ordinance in accordance with the procedures of this section. - B) If, upon inspection or investigation, the director or his/her designee is of the opinion that any person has violated any provision of this ordinance, he/she shall with reasonable promptness issue a correction notice to the person. Each such notice shall be in writing and shall describe the nature of the violation, including a reference to the provision within this ordinance that has been violated. In addition, the notice shall set a reasonable time for the abatement and correction of the violation. - C) If it is determined that the violation or violations continue after the time fixed for abatement and correction has expired, the director shall issue a citation by certified mail to the person who is in violation. Each such notice shall be in writing and shall describe the nature of the violation, including a reference to the provision within this ordinance that has been violated and what penalty, if any, is proposed to be assessed. The person charged has 30 days within which to contest the citation or proposed assessment of penalty and to file a request for a hearing with the director or his/her designee. At the conclusion of this hearing, the director or his/her designee will issue a final order, subject to appeal to the appropriate authority. If, within 30 days from the receipt of the citation issued by the director, the person fails to contest the citation or proposed assessment of penalty, the citation or proposed assessment of penalty shall be deemed the final order of the director. - B) Any person who violates any provision of this ordinance may be liable for any cost or expenses incurred as a result thereof by the agency. - C) Penalties that may be assessed for those deemed to be in violation may include the following: - 1) A civil penalty not to exceed \$1,000.00 for each violation. Every day that such violation(s) continue will be considered a separate offense. - 2) A criminal penalty in the form of a fine of not more than \$1,000.00 for each violation, imprisonment for not more than 90 days, or both. Every day that such violation(s) continue will be considered a separate offense. - 3) Anyone who knowingly makes any false statements in any application, record, or plan required by this ordinance shall upon conviction be punished by a fine of not more than \$1,000.00 for each violation, imprisonment for not more than 30 days, or both. Specific penalties will vary between communities, and should reflect realistically enforceable penalties given the political realities of a jurisdictin. F) In addition to any other sanctions listed in this ordinance, a person who fails to comply with the provisions of this
buffer ordinance shall be liable to the agency in a civil action for damages in an amount equal to twice the cost of restoring the buffer. Damages that are recovered in accordance with this action shall be used for the restoration of buffer systems or for the administration of programs for the protection and restoration of water quality, streams, wetlands, and floodplains. #### Section IX. Waivers/Variances - A) This ordinance shall apply to all proposed development except for activities that were completed prior to the effective date of this ordinance and had received the following: - 1) A valid, unexpired permit in accordance with development regulations - 2) A current, executed public works agreement - 3) A valid, unexpired building permit - 4) A waiver in accordance with current development regulations. - B) The director of the agency may grant a variance for the following: - 1) Those projects or activities for which it can be demonstrated that strict compliance with the ordinance would result in a practical difficulty or financial hardship - 2) Those projects or activities serving a public need where no feasible alternative is available - The repair and maintenance of public improvements where avoidance and minimization of adverse impacts to nontidal wetlands and associated aquatic ecosystems have been addressed - 4) Those developments which have had buffers applied in conformance with previously issued requirements - C) Waivers for development may also be granted in two additional forms, if deemed appropriate by the director: - 1) The buffer width made be reduced at some points as long as the average width of the buffer meets the minimum requirement. This averaging of the buffer may be used to allow for the presence of an existing structure or to recover a lost lot, as long as the streamside zone (Zone I) is not disturbed by the reduction and no new structures are built within the 100-year floodplain. - 2) ______ (planning agency) may offer credit for additional density elsewhere on the site in compensation for the loss of developable land due to the requirements of this ordinance. This compensation may increase the total number of dwelling units on the site up to the amount permitted under the base zoning. - D) The applicant shall submit a written request for a variance to the director of the agency. The application shall include specific reasons justifying the variance and any other information necessary to evaluate the proposed variance request. The agency may require an alternative analysis that clearly demonstrates that no other feasible alternatives exist and that minimal impact will occur as a result of the project or development. - E) In granting a request for a variance, the director of the agency may require site design, landscape planting, fencing, signs, and water quality best management practices to reduce adverse impacts on water quality, streams, wetlands, and floodplains. ### Section X. Conflict With Other Regulations Where the standards and management requirements of this buffer ordinance are in conflict with other laws, regulations, and policies regarding streams, steep slopes, erodible soils, wetlands, floodplains, timber harvesting, land disturbance activities, or other environmental protective measures, the more restrictive shall apply. Figure 1: Stream Order (Source: Schueler, 1995) Figure 2: Three Zone Buffer System (Adapted from Welsch, 1991) #### References Heraty, M. 1993. Riparian buffer programs: a guide to developing and implementing a riparian buffer program as an urban best management practice. Metropolitan Washington Council of Governments, USEPA Office of Wetlands, Oceans and Watersheds. Washington, DC. Schueler, T. 1995. Site planning for urban stream protection. Metropolitan Washington Council of Governments, USEPA Office of Wetlands, Oceans and Watersheds. Washington, DC. Welsch, D. 1991. Riparian forest buffers. FS Pub. No. NA-PR-07-91. US Department of Agriculture, Forest Service. Forest Resources Management, Radnor, PA. # APPENDIX IV DCIA CALCULATIONS | | | | | | CT DEE | P MS4 Gen | eral Permi | t | | | | | | |--------------|-------------------|-------------|----------------------|-------------|--------------|-------------|-------------|--------------|--------------|--------------|--------|-------|--------| | ainage Basir | Area, Drainage | Sub-Basin A | rea and Impervious A | rea (IA) Ta | bulations ar | nd Directly | Connected | Impervious / | Area (DCIA) | Computations | Walli | ngford - G | SM000050 | CT ECO | | | CT EC | | | CT DEEP | Town | | Total | | | | | | State | Town | Town | Town | | | Regional | Basin | CT DEEP | Basin | | | | | | Road | Imp. | Imp. | Road | | Town Area | Drainage | Area | Drainage | Area | | Ir | npervious A | rea (Ac) | | Imp. Area | Area | Area | Imp. A | | Acres | Basin No. | Acres | Sub-Basin No. | Ac. | Buildings | Roads | Other | Total | % | Ac. | Ac. | % | Ac. | | 25,821.30 | Uconn CLEAR Webs | site | | | 1088.52 | 1040.91 | 1938.86 | 4,068.29 | 15.76 | 272.59 | | | 768.3 | | 25,822 | NEMO Website | | | | 1000.52 | 1040.91 | 1930.00 | 4,000.23 | 13.70 | 2/2:33 | | | 700.5 | | 20/022 | TELLIO WEDSILE | | | | | | | | | | | | | | 9,414.1 | 5200 | 9,419.58 | Quinnipiac River | | | | | | | | | | | | Check | Clipped Basin | 458.26 | 5200-11-1 | 993.9 | 13.93 | 11.24 | 14.58 | 39.76 | 8.68 | 6.75 | 33.01 | 7.20 | 4.49 | | | Clipped Basin | 159.92 | 5200-10-1 | 1,214.3 | 7.53 | 7.80 | 10.82 | 26.14 | 16.35 | 0.00 | 26.14 | 16.35 | 7.80 | | | Clipped Basin | 1,584.95 | 5200-00-4-R7 | 2,322.3 | 64.35 | 54.11 | 134.91 | 253.36 | <i>15.99</i> | 17.62 | 235.74 | 14.87 | 36.4. | | | | 528.6 | 5200-10-2-R1 | 528.6 | 46.50 | 33.38 | 113.89 | 193.78 | 36.66 | 17.63 | 176.15 | 33.32 | 15.70 | | | | 766.4 | 5200-00-4-R8 | 766.4 | 77.06 | 44.06 | 160.93 | 282.05 | 36.80 | 18.68 | 263.37 | 34.36 | 25.3 | | | | 1,118.1 | 5200-12-1-L1 | 1,118.1 | 66.65 | 60.26 | 83.33 | 210.24 | 18.80 | 1.20 | 209.04 | 18.70 | 59.00 | | | | 1,121.2 | 5200-13-1 | 1,121.2 | 95.76 | 59.29 | 177.81 | 332.86 | 29.69 | 13.12 | 319.74 | 28.52 | 46.17 | | | | 30.7 | 5200-12-1 | 30.7 | 2.37 | 2.20 | 4.99 | 9.56 | 31.14 | 1.25 | 8.31 | 27.07 | 0.95 | | | | 934.4 | 5200-00-4-L3 | 934.4 | 69.75 | 60.06 | 121.83 | 251.64 | 26.93 | 17.77 | 233.87 | 25.03 | 42.29 | | | | 26.4 | 5200-14-1-L1 | 26.4 | 3.34 | 0.57 | 2.01 | 5.93 | 22.46 | 0.00 | 5.93 | 22.46 | 0.57 | | | | 416.3 | 5200-14-1 | 416.3 | 26.52 | 22.90 | 35.56 | 84.98 | 20.41 | 0.19 | 84.79 | 20.37 | 22.7 | | | | 675.6 | 5200-00-4-R10 | 675.6 | 87.91 | 59.49 | 126.35 | 273.76 | 40.52 | 20.36 | 253.40 | 37.51 | 39.1 | | | | 274.4 | 5200-00-4-R11 | 274.4 | 18.74 | 15.55 | 58.01 | 92.31 | 33.64 | 4.80 | 87.51 | 31.89 | 10.7 | | | Clipped Basin | 600.71 | 5200-15-1 | 606.2 | 26.30 | 21.94 | 31.18 | 13.22 | 2.20 | 0.65 | 12.57 | 2.09 | 21.2 | | | Clipped Basin | 668.60 | 5200-00-4-R12 | 737.8 | 24.86 | 20.37 | 77.34 | 122.50 | 18.32 | 9.12 | 113.38 | 16.96 | 11.25 | | | Clipped Basin | 35.84 | 5200-19-1-L1 | 896.3 | 1.33 | 1.22 | 4.00 | 6.55 | 18.28 | 0.00 | 6.55 | 18.28 | 1.22 | | | Clipped Basin | 12.99 | 5200-17-1 | 1,112.8 | 0.35 | 0.54 | 0.73 | 1.62 | 12.47 | 0.18 | 1.44 | 11.09 | 0.36 | | | Clipped Basin | 0.75 | 5200-16-1 | 1,059.3 | 0.00 | 0.00 | 0.01 | 0.01 | 1.33 | 0.00 | 0.01 | 1.33 | 0.00 | | | | | | • | | | | | | | | | | | 8,534.1 | 5208 | 8,563.18 | Muddy River | | | | | | | | | | | | Check | Clipped Basin | 820.65 | 5208-08-1 | 840.9 | 20.01 | 21.81 | 31.87 | 73.69 | 8.98 | 0.00 | 73.69 | 8.98 | 21.8 | | | Clipped Basin | 73.25 | 5208-00-3-R3 | 167.2 | 1.27 | 1.83 | 2.41 | 5.51 | 7.52 | 0.59 | 4.92 | 6.72 | 1.24 | | | Clipped Basin | 837.62 | 5208-00-3-L3 | 881.4 | 9.04 | 14.15 | 18.71 | 41.89 | 5.00 | 5.04 | 36.85 | 4.40 | 9.11 | | | Clipped Basin | 694.39 | 5208-00-3-R2 | 701.2 | 6.02 | 9.28 | 11.16 | 26.46 | 3.81 | 0.00 | 26.46 | 3.81 | 9.28 | | | | 137.2 | 5208-07-1 | 137.2 | 0.03 | 1.73 | 0.06 | 1.83 | 1.33 | 0.00 | 1.83 | 1.33 | 1.73 | | | | 444.9 | 5208-06-1 | 444.9 | 6.83 | 18.71 | 12.14 | 37.69 | 8.47 | 9.56 | 28.13 | 6.32 | 9.16 | | | | 540.1 | 5208-05-1-L1 | 540.1 | 12.10 | 32.23 | 28.12 | 72.46 | 13.42 | 16.30 | 56.16 | 10.40 | 15.94 | | | Last Revised Date | CT D | EEP MS4 G | eneral Pern | nit | | | | | | | | |-----------------------|---------------------------------------|---------------------------|-------------|--------------|--------------------|---------------|-------------|--------------|------------------|-------------|----------------|-----------------------|-------------|-------------|----------------|----------------|------| | | | Drainage B | asin Area, | Drainage S | Sub-Basin <i>A</i> | Area and In | pervious A | Area (IA) Ta | bulations a | and Directl | y Connected | l Impervio | us Area (D | CIA) Compu | utations | | | | | | | | | | | _ | U: | CCMOOOL | • | | | | | | | | | | | | | | | | wa | llingford - | GSMUUUUS | U | | | | | | | | | CT DEED | | | | _ | | | | _ | | | | | - | | | | | | CT DEEP | Town | CT DEED | Total | Town | | igh Connectiv | | | erage Connect | | | tial Connecti | | | ight Connectiv | - | | | Drainage
Sub-Basin | Basin | CT DEEP | Imp. | Imp.
Area | | % = 0.4*(IA% | | | % = 0.1*(IA% | | | % = 0.04*(IA%
DCIA | | | % = 0.01*(IA% | 6)^2.0
DCIA | DCIA | | No. | Area
Acres | Drainage
Sub-Basin No. | Area
Ac. | % | Imp.
Ac. | DCIA
% | DCIA
Ac. | Imp. | DCIA
% | DCIA
Ac. | Imp. | % | DCIA
Ac. | Imp.
Ac. | DCIA
% | Ac. | Ac. | | 1101 | Acies | Jub Jubili Itol | Aci | 70 | Aci | 70 | ACI | 7.01 | | | | | | | HDR | | | MDR | Comm. | Ind. | LDR | | | Forest | Ag. | | | | | | | | | | | | Urba | n Public/Institu | itional | | | | | | | | | | | | | | | | | | Open Land | | | | | | | | | | 5200 | | Quinnipiac River | | | | | | | | | | | | | | | | | | | 5200-11-1 | 33.01 | 7.20
| 0.00 | 0.00 | 0.00 | 16.51 | 1.93 | 0.32 | 16.51 | 1.15 | 0.19 | 0.00 | 0.00 | 0.00 | 0.51 | | | | 5200-10-1 | 26.14 | 16.35 | 13.07 | 11.43 | 1.49 | 13.07 | 6.61 | 0.86 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2.30 | | | · · · · · · · · · · · · · · · · · · · | 5200-00-4-R7 | 235.74 | 14.87 | 117.87 | 10.21 | 12.03 | 117.87 | 5.74 | 6.76 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 18.7 | | | | 5200-10-2-R1 | 176.15 | 33.32 | 176.15 | 26.88 | 47.34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 47.3 | | | | 5200-00-4-R8 | 263.37 | 34.36 | 263.37 | 27.89 | 73.44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 73.4 | | | | 5200-12-1-L1 | 209.04 | 18.70 | 209.04 | 13.43 | 28.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 28.0 | | | | 5200-13-1 | 319.74 | 28.52 | 319.74 | 22.29 | 71.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 71.2 | | | | 5200-12-1 | 8.31 | 27.07 | 8.31 | 20.94 | 1.74 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.7 | | | | 5200-00-4-L3 | 233.87 | 25.03 | 233.87 | 19.06 | 44.58 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 44.5 | | | | 5200-14-1-L1 | 5.93 | 22.46 | 5.93 | 16.74 | 0.99 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.99 | | | | 5200-14-1 | 84.79 | 20.37 | 84.79 | 14.89 | 12.62 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 12.6 | | | 675.6 | 5200-00-4-R10 | 253.40 | 37.51 | 253.40 | 30.97 | 78.49 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 78.4 | | | | 5200-00-4-R11 | 87.51 | 31.89 | 87.51 | 25.50 | 22.31 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 22.3 | | | | 5200-15-1 | 12.57 | 2.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 12.57 | 0.14 | 0.02 | 0.00 | 0.00 | 0.00 | 0.0 | | | 668.6 | 5200-00-4-R12 | 113.38 | 16.96 | 56.69 | 11.95 | 6.77 | 56.69 | 6.98 | 3.96 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 10.7 | | | 35.8 | 5200-19-1-L1 | 6.55 | 18.28 | 6.55 | 13.07 | 0.86 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.8 | | | <i>13.0</i> | 5200-17-1 | 1.44 | 11.09 | 0.00 | 0.00 | 0.00 | 0.72 | 3.69 | 0.03 | 0.72 | 2.39 | 0.02 | 0.00 | 0.00 | 0.00 | 0.0 | | | 0.8 | 5200-16-1 | 0.01 | 1.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | | 5208 | 8,563.18 | Muddy River | | | | | | | | | | | | | | | | | | • | 5208-08-1 | 73.69 | 8.98 | 0.00 | 0.00 | 0.00 | 36.85 | 2.69 | 0.99 | 36.85 | 1.67 | 0.62 | 0.00 | 0.00 | 0.00 | 1.6 | | | | 5208-00-3-R3 | 4.92 | 6.72 | 0.00 | 0.00 | 0.00 | 2.46 | 1.74 | 0.04 | 2.46 | 1.02 | 0.03 | 0.00 | 0.00 | 0.00 | 0.0 | | | | 5208-00-3-L3 | 36.85 | 4.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 36.85 | 0.50 | 0.18 | 0.00 | 0.00 | 0.00 | 0.1 | | | | 5208-00-3-R2 | 26.46 | 3.81 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ <i>26.46</i> | 0.39 | 0.10 | 0.00 | 0.00 | 0.00 | 0.10 | | | | 5208-07-1 | 1.83 | 1.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.83 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 5208-06-1 | 28.13 | 6.32 | 0.00 | 0.00 | 0.00 | 14.07 | 1.59 | 0.22 | 14.07 | 0.92 | 0.13 | 0.00 | 0.00 | 0.00 | 0.3 | | | | 5208-05-1-L1 | 56.16 | 10.40 | 0.00 | 0.00 | 0.00 | 28.08 | 3.35 | 0.94 | 28.08 | 2.14 | 0.60 | 0.00 | 0.00 | 0.00 | 1.54 | ainage Basin | Area, Drainage S | Sub-Basin A | rea and Impervious A | Area (IA) Ta | bulations ar | nd Directly | Connected | Impervious | Area (DCIA) | Computations | | | | |--------------|-------------------|---------------|----------------------|--------------|--------------|-------------|-------------|------------|-------------|-----------------|--------------|-------------|--------------| | | | | | | 100 | | | | | | | | | | | | | | | Wallii | ngtora - G | SM000050 | CT DEEP | Town | | Total | | | | | | CT ECO
State | Tours | Town | CT ECC | | | Regional | Basin | CT DEEP | Basin | | | | | | Road | Town
Imp. | Imp. | Road | | Town Area | Drainage | Area | Drainage | Area | | Tı | npervious A | rea (Ac) | | Imp. Area | Area | Area | Imp. Ar | | Acres | Basin No. | Acres | Sub-Basin No. | Ac. | Buildings | Roads | Other | Total | % | Ac. | Ac. | % | Ac. | | ACICS | Dusin No. | Acics | Sub Busin No. | Aci | Dananigs | Rodus | Other | Total | 70 | ACI | AC. | 70 | Aci | | | | | Muddy River (Continu | ied) | | | | | | | | | | | | | 891.4 | 5208-00-3-L2 | 891.4 | 11.00 | 14.36 | 21.84 | 47.21 | 5.30 | 0.00 | 47.21 | 5.30 | 14.36 | | | | 1.4 | 5208-05-1 | 1.4 | 0.00 | 0.32 | 0.00 | 0.32 | 22.86 | 0.00 | 0.32 | 22.86 | 0.32 | | | | 12.4 | 5208-00-3-R1 | 12.4 | 0.21 | 0.22 | 0.46 | 0.89 | 7.18 | 0.00 | 0.89 | 7.18 | 0.22 | | | | 479.6 | 5208-04-1 | 479.6 | 4.03 | 8.24 | 8.15 | 20.43 | 4.26 | 0.00 | 20.43 | 4.26 | 8.24 | | | Clipped Basin | 660.46 | 5208-02-1-L1 | 664.2 | 2.91 | 5.85 | 6.48 | 15.25 | 2.31 | 0.00 | 15.25 | 2.31 | 5.85 | | | Clipped Basin | 481.10 | 5208-02-1 | 510.9 | 0.93 | 3.01 | 4.72 | 8.67 | 1.80 | 0.00 | 8.67 | 1.80 | 3.01 | | | | 592.0 | 5208-02-2-R1 | 592.0 | 10.67 | 12.89 | 22.45 | 46.01 | 7.77 | 4.52 | 41.49 | 7.01 | 8.36 | | | Clipped Basin | <i>594.22</i> | 5208-03-1 | 717.1 | 7.09 | 10.13 | 22.69 | 39.90 | 6.71 | 3.12 | 36.78 | 6.19 | 7.00 | | | Clipped Basin | <i>855.20</i> | 5208-00-1-L1 | <i>858.7</i> | 27.82 | 49.76 | 68.65 | 146.23 | 17.10 | 22.28 | 123.95 | 14.49 | <i>27.48</i> | | | | 305.5 | 5208-01-1 | 305.5 | 10.23 | 21.27 | 27.53 | 59.04 | 19.33 | 12.85 | 46.19 | 15.12 | 8.42 | | | | 26.0 | 5208-00-1 | 26.0 | 0.92 | 1.59 | 1.19 | 3.70 | 14.23 | 0.00 | 3.70 | 14.23 | 1.59 | | | | 54.7 | 5208-00-2-R1 | 54.7 | 1.85 | 2.48 | 3.64 | 7.98 | 14.59 | 0.00 | 7.98 | 14.59 | 2.48 | | | Clipped Basin | 22.43 | 5208-00-3-R5 | 198.4 | 0.00 | 0.00 | 0.15 | 0.15 | 0.67 | 0.00 | 0.15 | 0.67 | 0.00 | | | Clipped Basin | 8.69 | 5208-09-1 | 536.0 | 0.05 | 0.00 | 0.10 | 0.15 | <i>1.73</i> | 0.00 | 0.15 | <i>1.73</i> | 0.00 | | | Clipped Basin | 0.91 | 5208-00-3-R4 | 28.1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 4,652.0 | 5207 | 4,654.02 | Wharton Brook | | | | | | | | | | | | Check | Clipped Basin | 658.6 | 5207-02-1-L1 | 822.4 | 27.10 | 48.18 | 35.99 | 159.68 | 24.25 | 23.63 | 136.05 | 20.66 | 24.55 | | J | Clipped Basin | 91.4 | 5207-00-2-R2 | 161.2 | 11.87 | 2.37 | 18.24 | 36.35 | 39.77 | 1.04 | 35.31 | 38.63 | 1.33 | | | Clipped Basin | 1.4 | 5207-02-1 | 2.4 | 0.02 | 0.00 | 0.19 | 0.28 | 20.00 | 0.00 | 0.28 | 20.00 | 0.00 | | | Clipped Basin | 480.0 | 5207-00-1-L1 | 488.1 | 12.53 | 11.72 | 22.59 | 49.17 | 10.24 | 2.69 | 46.48 | 9.68 | 9.03 | | | Ciipped Zdeiii | 1,397.1 | 5207-00-1-L2 | 1,397.1 | 59.98 | 65.49 | 84.74 | 210.21 | 15.05 | 3.80 | 206.41 | 14.77 | 61.69 | | | | 736.5 | 5207-00-1 | 736.5 | 63.14 | 44.99 | 91.85 | 199.98 | 27.15 | 2.48 | 197.50 | 26.82 | 42.51 | | | | 906.2 | 5207-01-1 | 906.2 | 48.35 | 55.97 | 70.60 | 174.92 | 19.30 | 17.64 | 157.28 | 17.36 | 38.33 | | | | 380.8 | 5207-00-2-R1 | 380.8 | 29.14 | 27.71 | 51.25 | 108.09 | 28.38 | 7.79 | 100.30 | 26.34 | 19.92 | | 1,149.7 | 5302 | 1,149.37 | Mill River | | | | | | | | | | | | Check | Clipped Basin | 681.93 | 5302-02-1 | 1,077.6 | 16.26 | 19.29 | 28.84 | 64.39 | 9.44 | 0.00 | 64.39 | 9.44 | 19.29 | | Check | Clipped Basin | 467.77 | 5302-04-1-L1 | 1,521.3 | 12.65 | 15.92 | 19.44 | 48.01 | 10.26 | 0.00 | 48.01 | 10.26 | 15.92 | | 03/11/20 | Last Revised Date | 107.77 | 3302 0 1 1 LI | 1,521.5 | 12.03 | 13.72 | 13.17 | 10.01 | 10,20 | 0.00 | 10.01 | 10.20 | 15.52 | | | | | | | | | CT I | DEEP MS4 Ge | neral Pern | nit | | | | | | | | |-----------|--------------|------------------|-------------|------------|--------------------|--------------------|-----------|--------------|--------------|-------------|-------------|---------------|---------------|------------|---------------|---------------|-------| | | | Drainage E | Basin Area, | Drainage S | Sub-Basin <i>I</i> | Area and In | npervious | Area (IA) Ta | bulations a | and Directl | y Connected | d Impervio | us Area (D | CIA) Compu | tations | W | allingford - | GSM00005 | 0 | CT DEEP | Town | | Total | Town | Н | ⊥
igh Connectiv | ity | Ave | rage Connect | tivity | Pai | tial Connecti | vity | Slig | jht Connecti | vity | | | Drainage | Basin | CT DEEP | Imp. | Imp. | DCIA | % = 0.4*(IA% |)^1.2 | DCIA | % = 0.1*(IA% | o)^1.5 | DCIA9 | % = 0.04*(IA% | 6)^1.7 | DCIA% | % = 0.01*(IA% | %)^2.0 | | | Sub-Basin | Area | Drainage | Area | Area | Imp. | DCIA | DCIA | DCIA | | No. | Acres | Sub-Basin No. | Ac. | % | Ac. | % | Ac. | Ac. | | | | Muddy River (Con | tinued) | | | | | | | | | | | | | | | | | 891.4 | 5208-00-3-L2 | 47.21 | 5.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 47.21 | 0.68 | 0.32 | 0.00 | 0.00 | 0.00 | 0.32 | | | 1.4 | 5208-05-1 | 0.32 | 22.86 | 0.32 | 17.10 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | | | 12.4 | 5208-00-3-R1 | 0.89 | 7.18 | 0.00 | 0.00 | 0.00 | 0.45 | 1.92 | 0.01 | 0.45 | 1.14 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | | | 479.6 | 5208-04-1 | 20.43 | 4.26 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 20.43 | 0.47 | 0.10 | 0.00 | 0.00 | 0.00 | 0.10 | | | 660.5 | 5208-02-1-L1 | 15.25 | 2.31 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 15.25 | 0.17 | 0.03 | 0.00 | 0.00 | 0.00 | 0.03 | | | 481.1 | 5208-02-1 | 8.67 | 1.80 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8.67 | 0.11 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | | | 592.0 | 5208-02-2-R1 | 41.49 | 7.01 | 0.00 | 0.00 | 0.00 | 20.75 | 1.86 | 0.38 | 20.75 | 1.10 | 0.23 | 0.00 | 0.00 | 0.00 | 0.61 | | | <i>594.2</i> | 5208-03-1 | 36.78 | 6.19 | 0.00 | 0.00 | 0.00 | 18.39 | <i>1.54</i> | 0.28 | 18.39 | 0.89 | 0.16 | 0.00 | 0.00 | 0.00 | 0.45 | | | <i>855.2</i> | 5208-00-1-L1 | 123.95 | 14.49 | 61.98 | 9.90 | 6.13 | 61.98 | 5.52 | 3.42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
| 0.00 | 9.55 | | | 305.5 | 5208-01-1 | 46.19 | 15.12 | 23.10 | 10.41 | 2.40 | 23.10 | 5.88 | 1.36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3.76 | | | 26.0 | 5208-00-1 | 3.70 | 14.23 | 1.85 | 9.68 | 0.18 | 1.85 | 5.37 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.28 | | | 54.7 | 5208-00-2-R1 | 7.98 | 14.59 | 3.99 | 9.97 | 0.40 | 3.99 | 5.57 | 0.22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.62 | | | 22.4 | 5208-00-3-R5 | 0.15 | 0.67 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.15 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 8.7 | 5208-09-1 | 0.15 | 1.73 | 0.08 | 0.77 | 0.00 | 0.00 | 0.00 | 0.00 | 0.15 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.9 | 5208-00-3-R4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 5207 | 4,654,02 | Wharton Brook | | | | | | | | | | | | | | | | | | | 5207-02-1-L1 | 136.05 | 20.66 | 136.05 | 15.14 | 20.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 20.60 | | | | 5207-00-2-R2 | 35.31 | 38.63 | 35.31 | 32.09 | 11.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 11.33 | | | | 5207-02-1 | 0.28 | 20.00 | 0.28 | 14.56 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | | | 480.0 | 5207-00-1-L1 | 46.48 | 9.68 | 0.00 | 0.00 | 0.00 | 23.24 | 3.01 | 0.70 | 23.24 | 1.90 | 0.44 | 0.00 | 0.00 | 0.00 | 1.14 | | | 1,397.1 | 5207-00-1-L2 | 206.41 | 14.77 | 103.21 | 10.13 | 10.45 | 103.21 | 5.68 | 5.86 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 16.31 | | | 736.5 | 5207-00-1 | 197.50 | 26.82 | 197.50 | 20.71 | 40.90 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 40.90 | | | 906.2 | 5207-01-1 | 157.28 | 17.36 | 78.64 | 12.29 | 9.66 | 78.64 | 7.23 | 5.69 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 15.35 | | | 380.8 | 5207-00-2-R1 | 100.30 | 26.34 | 100.30 | 20.27 | 20.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 20.33 | | 5302 | 1,149.37 | Mill River | | | | | | | | | | | | | | | | | | | 5302-02-1 | 64.39 | 9.44 | 0.00 | 0.00 | 0.00 | 32.20 | 2.90 | 0.93 | 32.20 | 1.82 | 0.59 | 0.00 | 0.00 | 0.00 | 1.52 | | | | 5302-04-1-L1 | 48.01 | 10.26 | 0.00 | 0.00 | 0.00 | | 3.29 | 0.79 | _
24.01 | 2.10 | 0.50 | 0.00 | 0.00 | 0.00 | 1.29 | | 03/11/20 | Last Revise | d Date | Wallii | ngford - G | SM000050 | | | | | | | |-----------|--------------------------------|-----------------|---------------------------|----------------|--------------|--------------|--------------|---------------|--------------|-----------------|---------------|--------------|----------------| | | | | | | | | | | | CT FCO | | | CT FCO | | | CT DEEP | Town | | Total | | | | | | CT ECO
State | Town | Town | CT ECO
Town | | | Regional | Basin | CT DEEP | Basin | | | | | | Road | Imp. | Imp. | Road | | Town Area | Drainage | Area | Drainage | Area | | Iı | mpervious Aı | rea (Ac) | | Imp. Area | Area | Area | Imp. Area | | Acres | Basin No. | Acres | Sub-Basin No. | Ac. | Buildings | Roads | Other | Total | % | Ac. | Ac. | % | Ac. | | | | | _ | | | | | | | | | | | | 1,048.6 | 5112 | 1048.83 | Farm River | 244.00 | 2.70 | | | 2.24 | | | | | | | Check | Clipped Basin | 159.69 | 5112-02-1-L1 | 344.90 | 0.50 | 1.63 | 1.12 | 3.24 | 2.03 | 0.00 | 3.24 | 2.03 | 1.63 | | | Clina and Bonic | 138.8 | 5112-02-1-D1 | 138.8 | 1.87 | 3.01 | 3.03 | 7.91 | 5.70 | 0.00 | 7.91 | 5.70 | 3.01 | | | Clipped Basin | 154.51 | 5112-02-1 | 376.5 | 1.31 | 2.36 | 2.94 | 6.61 | 4.28 | 0.00 | 6.61 | 4.28 | 2.36 | | | Clipped Basin | 515.63
79.95 | 5112-03-1
5112-00-2-L1 | 619.4
455.1 | 3.59
2.07 | 4.00
2.06 | 8.33
3.81 | 15.92
7.94 | 3.09
9.93 | 0.00 | 15.92
7.94 | 3.09
9.93 | 4.00
2.06 | | | Clipped Basin | 79.93 | 3112-00-Z-L1 | 455.1 | 2.07 | 2.00 | 3.01 | 7.94 | 9.93 | 0.00 | 7.34 | 9.93 | 2.00 | | 592.1 | 5204 | 591.47 | Broad Brook | | | | | | | | | | | | Check | Clipped Basin | 337.32 | 5204-00-2-L1 | 1,884.7 | 8.4 | 10.75 | 13.01 | 32.16 | 9.53 | 3.00 | 29.16 | 8.64 | 7.75 | | | Clipped Basin | 226.1 | 5204-02-1 | 289.2 | 3.37 | 5.71 | 6.58 | 15.66 | 6.93 | 0.00 | 15.66 | 6.93 | 5.71 | | | Clipped Basin | 28.63 | 5204-01-1 | 268.5 | 1.55 | 1.93 | 0.88 | 4.37 | 15.26 | 0.00 | 4.37 | 15.26 | 1.93 | | 196.0 | 5206 | 195.91 | Harbor Brook | | | | | | | | | | | | Check | Clipped Basin | 193.40 | 5206-02-1-L1 | 681.40 | 18.56 | 12.20 | 24.65 | 55.41 | 28.65 | 6.15 | 49.26 | 25.47 | 6.04 | | CHECK | Clipped Basin | 2.60 | 5206-01-1-L1 | 65.30 | 0.00 | 0.00 | 0.08 | 0.08 | 3.08 | 0.00 | 0.08 | 3.08 | 0.00 | | | | | | | | | | | | | | | | | 194.3 | 4606 | 194.28 | Sawmill Brook | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2.22 | | Check | Clipped Basin | 156.03
0.96 | 4606-02-1
4606-01-1 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | | | Clipped Basin
Clipped Basin | 37.29 | 4606-01-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | | | | | 5.5 | 4607 | 5.53 | Coginchaug River | | | | | | | | | | | | Check | Clipped Basin | 5.53 | 4607-10-1-L1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 03/11/20 | Last Revised Date | Wa | allingford - (| SM00005 | 0 | | | | | | | | |-----------------------|----------------|---------------------------|---------------------|--------------|--------------|----------------------|------|----------------|----------------------|--------------|-------------|-----------------------|--------------|--------------|-----------------------|----------------|--------------| CT DEED | | | | _ | | | _ | _ | | | | | | | | | | | CT DEEP | Town | CT DEED | Total | Town | | h Connectiv | | | age Connect | | | rtial Connecti | | | ght Connecti | | | | Drainage
Sub-Basin | Basin
Area | CT DEEP
Drainage | Imp.
Area | Imp.
Area | | % = 0.4*(IA%
DCIA | DCIA | | % = 0.1*(IA%
DCIA | DCIA | | % = 0.04*(IA%
DCIA | DCIA | | % = 0.01*(IAº
DCIA | %)^2.0
DCIA | DCIA | | No. | Acres | Sub-Basin No. | Ac. | % | Imp.
Ac. | % | Ac. | Imp. | % | Ac. | Imp. | % | Ac. | Imp.
Ac. | % | Ac. | Ac. | 5112 | | Farm River | 2.24 | 2.02 | | 0.00 | 0.00 | | 0.00 | 0.00 | | 0.12 | 0.00 | | 2.22 | 0.00 | 2.22 | | | | 5112-02-1-L1 | <i>3.24</i> | 2.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | <i>3.24</i> | 0.13 | 0.00 | | 0.00 | 0.00 | 0.00 | | | | 5112-02-1-D1
5112-02-1 | 7.91
<i>6.61</i> | 5.70 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 7.91 | 0.77 | 0.06 | 0.00 | 0.00 | 0.00 | 0.06 | | | 154.5
515.6 | 5112-02-1 | 15.92 | 4.28
3.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3.31 | 0.47 | 0.02 | 0.00 | 0.00 | 0.00 | 0.02
0.04 | | | 80.0 | 5112-03-1
5112-00-2-L1 | 7.94 | 9.93 | 0.00
0.00 | 0.00 | 0.00 | 0.00
3.97 | <i>0.00 3.13</i> | 0.00
0.12 | | 0.27
1.98 | 0.04
0.08 | 0.00
0.00 | 0.00
0.00 | 0.00 | 0.04 | | | 00.0 | 3112-00-2-L1 | 7.54 | 9.95 | 0.00 | 0.00 | 0.00 | 3.3/ | 3.13 | 0.12 | 3.37 | 1.90 | 0.00 | 0.00 | 0.00 | 0.00 | 0.20 | | 5204 | 591.47 | Broad Brook | | | | | | | | | | | | | | | | | | 337.3 | 5204-00-2-L1 | 29.16 | 8.64 | 0.00 | 0.00 | 0.00 | 14.58 | 2.54 | 0.37 | 14.58 | 1.57 | 0.23 | 0.00 | 0.00 | 0.00 | 0.60 | | | 226.1 | 5204-02-1 | 15.66 | 6.93 | 0.00 | 0.00 | 0.00 | 7.83 | 1.82 | 0.14 | -
7.83 | 1.07 | 0.08 | 0.00 | 0.00 | 0.00 | 0.23 | | | 28.6 | 5204-01-1 | 4.37 | 15.26 | 2.19 | 10.53 | 0.23 | 2.19 | 5.96 | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.36 | | 5206 | 195.91 | Harbor Brook | | | | | | | | | | | | | | | | | 3200 | 193.4 | 5206-02-1-L1 | 49.26 | 25.47 | 49.26 | 19.47 | 9.59 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9.59 | | | 2.6 | 5206-01-1-L1 | 0.08 | 3.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | 0.27 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 101.20 | | | | | | | | | | | | | | | | | | 4606 | 194.28 | Sawmill Brook | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | | 0.00 | 2.22 | 0.00 | 2.22 | 2.22 | | | | 156.0 | 4606-02-1
4606-01-1 | 0.00
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 1.0
37.3 | 4606-01-1 | 0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00 | 0.00
0.00 | 0.00
0.00 | 0.00 | | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00 | 0.00 | | | 37.3 | 4000-00-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 4607 | 5.53 | Coginchaug River | | | | | | | | | | | | | | | | | | 5.5 | 4607-10-1-L1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | | | | | Total | DCIA (Ac.) = | 573.76 | # APPENDIX V IMPERVIOUS COVER TRACKING SPREADSHEET #### **Impervious Cover Tracking Spreadsheet** Town Wallingford Town area (ac): 25,821.30 *Based off of 2020 DCIA Calculations | | | PROJECT INFORMATION | N | NEW DEV | /ELOPMENT | REDEVE | LOPMENT | RETROFITS | CHA | NGE | | | CUMULATIVE | TOTALS | | NOTES & REFERENCES | |------|------------|---------------------|----------|------------------------|-----------|--|--|-----------|----------------------------|-----------------------------------|--------------------|---------------|----------------------|------------------------------|-----------------------|--------------------| | 1 | 2 | | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | | Date | Practice # | Project | Practice | Total IC
added (ac) | | Total IC
added or
subtracted
(ac) | Connected IC
added or
subtracted
(ac) | IC | Change in Total
IC (ac) | Change in
Connected
IC
(ac) | Net change
(ac) | TOWN TOTAL IC | TOWN TOTAL
IC (%) | TOWN
CONNECTED
IC (ac) | TOWN CONNECTED IC (%) | Notes & References | | | | Townwide BASELINI | E | | | | | | | | | 4068.29 | 15.76% | | 0.00% | 0.0 | | | | | | NET 0.0 acres disconnected % #DIV/0! % disconnected NEMO Project Center for Land Use Education and Research (CLEAR) University of Connecticut clear@uconn.edu - 1 This is just our take on it. Feel free to change and tailor as you see fit. - 2 Area unit used is acres but could be anything #### COLUMNS - 1 date of completion - 2 any identifying system will do - 3 overall description of project - 4 overview of LID practices used - 5 for new development, total acres of IC added 6 acres of #5 above that are connected - 7 for redevelopment projects: total ic after project minus total ic before project - 8 for redevelopment projects: connected ic after project minus connected ic before project - 9 for retrofits of exisiting development, total acres IC disconnected (from plans and observation) - 10 change in total IC after project completion - 11 change in connected IC after project completion - 12 cumulative total of IC in town, acres 13 cumulative total of IC in town, % - 14 cumulative total of connected IC in town, acres - 15 cumulative total of connected IC in town, % - 16 notes, referrals to other files, plans, photos, folders, etc. # APPENDIX VI CATCHMENT RANKINGS | Catchment ID | Outfalls
Included | Receiving Water(s) | Previous
Screening
Results Indicate
Likely Sewer
Input? ¹ | Discharging to
Area of Concern
to Public Health? | Frequency of Past
Discharge
Complaints | Receiving
Water Quality ³ | Density of
Generating Sites
4 | Age of Development/ Infrastructure 5 | Historic
Combined
Sewers or
Septic? ⁶ | Aging
Septic? ⁷ | Culverted
Streams? ⁸ | Additional Characteristics | Sewer Repair
Nearby? | Urbanized Area | DCIA >11% | Impaired Waterbody | | Priority Ranking
0-5: Low Priority | |---------------|----------------------|-------------------------------------|--|--|--|---|---|--|---|---------------------------------|------------------------------------|--|------------------------------|------------------|-----------------------------------|--------------------|-------|---------------------------------------| | Infor | mation Source | | Catchment inspections and sample results | GIS Maps | Municipal Staff | Impaired
Waters List | Land Use/GIS
Maps, Aerial
Photography | Land Use
Information, Visual
Observation | Municipal Staff,
GIS Maps | Land Use,
Municipal
Staff | GIS and Storm
System Maps | Other | Municipal Staff, GIS
Maps | CLEAR | Nathan L Jacobson &
Associates | CLEAR | Score | 6-9: Problem
≥: 10 high Priority | | Scc | oring Criteria | | Yes = 3 (Problem
Catchment)
No = 0 | Yes = 3
No = 0 | Frequent = 3 Occasional = 2 None = 0 | Poor = 3 Fair = 2 Good = 0 | High = 3 Medium = 2 Low = 1 | High = 3 Medium = 2 Low = 1 | Yes = 3
No = 0 | Yes = 3
No = 0 | Yes = 3
No = 0 | Description | Yes=2
No=0 | Yes =1
No = 0 | Yes =1
No = 0 | Yes =1
No = 0 | | | | 4606-00-1 | 0 | None | | 0 | | 0 | 1 | 1 | 0 | | 0 | Wooded | | 0 | 0 | 0 | 2 | Low Priority | | 4606-01-1 | 0 | None | | 0 | | 0 | 1 | 1 | 0 | | 0 | Wooded | | 0 | 0 | 0 | 2 | Low Priority | | 4606-02-1 | 0 | Unnamed Stream | | 0 | | 0 | 1 | 1 | 0 | | 0 | Wooded | | 0 | 0 | 0 | 2 | Low Priority | | 4607-10-1-L1 | 0 | None | | 0 | | 0 | 1 | 1 | 0 | | 0 | Wooded | | 0 | 0 | 0 | 2 | Low Priority | | 5112-00-2-L1 | 2 | Unnamed Stream | | 0 | | 0 | 1 | 2 | 0 | | 3 | Wooded, some residential
housing, light agricultural
land | | 1 | 0 | 0 | 7 | Problem | | 5112-02-1 | 4 | Unnamed Stream | | 0 | | 0 | 1 | 2 | 0 | | 3 | Wooded, cleared land, light residential housing | | 0 | 0 | 0 | 6 | Problem | | 5112-02-1-D1 | 0 | None | | 0 | | 0 | 1 | 2 | 0 | | 0 | Wooded, agricultural land | | 0 | 0 | 0 | 3 | Low Priority | | 5112-02-1-L1 | 0 | Unnamed Stream | | 0 | | 0 | 1 | 1 | 0 | | 0 | Wooded and Pitsapaug
Pond | | 0 | 0 | 0 | 2 | Low Priority | | 5112-03-1 | 1 | Unnamed Stream | | 0 | | 0 | 1 | 2 | 0 | | 3 | Wooded, cleared land,
some agricultural land and
residential housing | | 0 | 0 | 0 | 6 | Problem | | 5200-00-4-L3 | 49 | Quinnipiac River,
Community Lake | | 0 | | 3 | 3 | 2 | 0 | | 0 | Wooded, some commercial and residential housing | | 1 | 1 | 1 | 11 | High Priority | | 5200-00-4-R10 | 45 | Quinnipiac River | | 0 | | 2 | 3 | 2 | 0 | | 3 | Commercial development,
some residential housing
and wooded areas | | 1 | 1 | 1 | 13 | High Priority | | 5200-00-4-R11 | 20 | Quinnipiac River | | 0 | | 2 | 2 | 2 | 0 | | 0 | Wooded and commercial, some residential housing | | 1 | 1 | 1 | 9 | Problem | | 5200-00-4-R12 | 27 | Quinnipiac River | | 0 | | 2 | 2 | 1 | 0 | | 3 | Wooded, some agricultural
land and commercial, light
residential | | 1 | 1 | 1 | 11 | High Priority | | Catchment ID | Outfalls
Included | Receiving Water(s) | Previous
Screening
Results Indicate
Likely Sewer
Input? ¹ | Discharging to
Area of Concern
to Public Health? | Frequency of Past
Discharge
Complaints | | Density of
Generating Sites
4 | Age of
Development/
Infrastructure ⁵ | Historic
Combined
Sewers or
Septic? ⁶ | Aging
Septic? ⁷ | Culverted
Streams? ⁸ | Additional Characteristics | Sewer Repair
Nearby? | Urbanized Area | DCIA >11% | Impaired Waterbody | | Priority Ranking | |--------------|----------------------|---|--|--|--|------------------------------|---|---|---|---------------------------------|------------------------------------|---|------------------------------|------------------|-----------------------------------|--------------------|-------|--| | Infor | mation Source | | Catchment inspections and sample results | GIS Maps | Municipal Staff | Impaired
Waters List | Land Use/GIS
Maps, Aerial
Photography | Land Use
Information, Visual
Observation | Municipal Staff,
GIS Maps | Land Use,
Municipal
Staff | GIS and Storm
System Maps | Other | Municipal Staff, GIS
Maps | CLEAR | Nathan L Jacobson &
Associates | CLEAR | Score | 0-5: Low Priority
6-9: Problem
≥: 10 high Priority | | Sco | oring Criteria | | Yes = 3 (Problem
Catchment)
No = 0 | Yes = 3
No = 0 | Frequent = 3 Occasional = 2 None = 0 | Poor = 3 Fair = 2 Good = 0 | High = 3 Medium = 2 Low = 1 | High = 3
Medium = 2
Low = 1 | Yes = 3
No = 0 | Yes = 3
No = 0 | Yes = 3
No = 0 | Description | Yes=2
No=0 | Yes =1
No = 0 | Yes =1
No = 0 | Yes =1
No = 0 | | | | 5200-00-4-R7 | 84 | Quinnipiac River | | 3 | | 2 | 2 | 2 | 0 | | 3 | Commercial, some
residential housing, light
wooded areas | | 1 | 1 | 1 | 15 | High Priority | | 5200-00-4-R8 | 81 | Quinnipiac River | | 3 | | 2 | 3 | 2 | 0 | | 0 | Commercial and residential
housing, light wooded
areas | | 1 | 1 | 1 | 13 | High Priority | | 5200-10-1 | 14 | Meetinghouse Brook | | 3 | | 0 | 2 | 1 | 0 | | 3 | Residential housing, some commercial and wooded areas | | 1 | 1 | 0 | 11 | High Priority | | 5200-10-2-R1 | 69 | Meetinghouse Brook | | 3 | | 0 | 3 | 2 | 0 | | 3 | Commercial, light residential housing and wooded, highway | | 1 | 1 | 0 | 13 | High Priority | | 5200-11-1 | 15 | Spruce Glen Brook | | 3 | | 0 | 2 | 2 | 0 | | 3 | Residential housing, some
wooded, light agricultural
land, highway | | 1 | 0 | 0 | 11 | High Priority | | 5200-12-1 | 2 | Unnamed Stream | | 3 | | 0 | 2 | 2 | 0 | | 3 | Commercial, some wooded | | 1 | 1 | 0 | 12 | High Priority | | 5200-12-1-L1 | 49 | Unnamed Stream | | 3 | | 0 | 2 | 2 | 0 | | 3 | Wooded, some residential
housing, light commercial
and athletic fields | | 1 | 1 | 0 | 12 | High Priority | | 5200-13-1 | 62 | Padens Brook | | 3 | | 2 | 3 | 2 | 0 | | 3 | Commercial, some
residential housing, light
wooded and agricultural
land | | 1 | 1 | 1 | 16 | High Priority | | 5200-14-1 | 38 | Unnamed Pond | | 0 | | 0 | 1 | 1 | 0 | | 0 | Pond, light wooded and residential | | 1 | 1 | 0 | 4 | Low Priority | | 5200-14-1-L1 | 3 | Unnamed Stream | | 0 | | 0 | 2 | 2 | 0 | | 3 | Some wooded and residential housing | | 1 | 1 | 0 | 9 | Problem | | 5200-15-1 | 34 | Unnamed Streams,
Peanuts Pond, Farms
Pond, Fergusons Pond | | 0 | | 0 | 3 | 2 | 0 | | 3 | Residential housing, some agricultural land, light wooded | | 1 | 0 | 0 | 9 | Problem | | 5200-16-1 | 0 | None | | 0 | | 0 | 1 | 1 | 0 | | 0 | Wooded | | 0 | 0 | 0 | 2 | Low Priority | | 5200-17-1 | 0 | None | | 0 | | 0 | 1 | 2 | 0 | |
0 | Light residential housing | | 1 | 0 | 0 | 4 | Low Priority | | 5200-19-1-L1 | 0 | None | | 0 | | 0 | 1 | 2 | 0 | | 0 | Light residential housing | | 1 | 1 | 0 | 5 | Low Priority | | 5204-00-2-L1 | 10 | Broad Brook | | 0 | | 0 | 2 | 2 | 0 | | 0 | Wooded, some residential housing | | 1 | 0 | 0 | 5 | Low Priority | | 5204-01-1 | 0 | Broad Brook | | 0 | | 0 | 1 | 1 | 0 | | 0 | Wooded | | 1 | 0 | 0 | 3 | Low Priority | | 5204-02-1 | 4 | Broad Brook | | 0 | | 0 | 2 | 2 | 0 | | 0 | Wooded, some residential housing | | 1 | 0 | 0 | 5 | Low Priority | | Catchment ID | Outfalls
Included | Receiving Water(s) | Previous
Screening
Results Indicate
Likely Sewer
Input? ¹ | Discharging to
Area of Concern
to Public Health? | Frequency of Past
Discharge
Complaints | Receiving
Water Quality ³ | Density of
Generating Sites
4 | Age of Development/Infrastructure 5 | Historic
Combined
Sewers or
Septic? ⁶ | Aging
Septic? ⁷ | Culverted
Streams? ⁸ | Additional Characteristics | Sewer Repair
Nearby? | Urbanized Area | DCIA >11% | Impaired Waterbody | | Priority Ranking | |---------------------------|----------------------|---|--|--|--|---|---|--|---|---------------------------------|------------------------------------|---|------------------------------|------------------|-----------------------------------|--------------------|-------|--| | Infor | mation Source | | Catchment inspections and sample results | GIS Maps | Municipal Staff | Impaired
Waters List | Land Use/GIS
Maps, Aerial
Photography | Land Use
Information, Visual
Observation | Municipal Staff,
GIS Maps | Land Use,
Municipal
Staff | GIS and Storm
System Maps | Other | Municipal Staff, GIS
Maps | CLEAR | Nathan L Jacobson &
Associates | CLEAR | Score | 0-5: Low Priority
6-9: Problem
≥: 10 high Priority | | Scc | oring Criteria | | Yes = 3 (Problem
Catchment)
No = 0 | Yes = 3
No = 0 | Frequent = 3 Occasional = 2 None = 0 | Poor = 3 Fair = 2 Good = 0 | High = 3 Medium = 2 Low = 1 | High = 3 Medium = 2 Low = 1 | Yes = 3
No = 0 | Yes = 3
No = 0 | Yes = 3
No = 0 | Description | Yes=2
No=0 | Yes =1
No = 0 | Yes =1
No = 0 | Yes =1
No = 0 | | | | 5206-01-1-L1 | 0 | High Hill Pond | | 0 | | 0 | 1 | 2 | 0 | | 0 | Wooded area with a small
cleared portion for
overhead electrical lines. | | 1 | 0 | 0 | 4 | Low Priority | | 5206-02-1-L1 | 6 | North Farms Reservoir
into Wharton Brook | | 0 | | 2 | 3 | 2 | 0 | | 0 | Developed with commercial or industrial sites. High impermeable areas. Lightly wooded areas | | 1 | 1 | 1 | 10 | High Priority | | 5207-00-1 | 44 | Wharton Brook | | 0 | | 2 | 3 | 2 | 0 | | 3 | Residential houisng, some cleared land | | 1 | 1 | 1 | 13 | High Priority | | 5207-00-1-L1 | 17 | North Farms Reservoir | | 0 | | 0 | 1 | 2 | 0 | | 0 | Some commercial, wooded, agricultural land, light residential | | 1 | 0 | 0 | 4 | Low Priority | | 5207-00-1-L2 | 66 | Wharton Brook, Catlin
Brook | | 0 | | 2 | 3 | 2 | 0 | | 3 | Residential housing, some
wooded and agricultural
land | | 1 | 0 | 1 | 12 | High Priority | | 5207-00-2-R1 | 11 | Wharton Brook | | 0 | | 2 | 3 | 2 | 0 | | 3 | Residential housing, some commecial, light wooded | | 1 | 1 | 1 | 13 | High Priority | | 5207-00-2-R2 | 9 | Wharton Brook | | 0 | | 2 | 2 | 2 | 0 | | 3 | Commercial, light wooded | | 1 | 1 | 1 | 12 | High Priority | | 5207-01-1 | 46 | Unnamed Stream | | 0 | | 2 | 3 | 2 | 0 | | 3 | Residential houisng,
commercial, golf course | | 1 | 1 | 1 | 13 | High Priority | | 5207-02-1
5207-02-1-L1 | 47 | Unnamed Stream Allen Brook | | 0 | | 2 | 3 | 2 | 0 | | 3 | Wooded Commercial and residential housing, highway, golf course | | 1 | 1 | 1 | 13 | Problem High Priority | | 5208-00-1 | 1 | Unnamed Stream | | 0 | | 0 | 1 | 2 | 0 | | 3 | Wooded, light residential housing | | 1 | 0 | 0 | 7 | Problem | | 5208-00-1-L1 | 74 | Muddy River | | 0 | | 2 | 2 | 1 | 0 | | 3 | Wooded and commercial,
light residential housing | | 1 | 0 | 1 | 10 | Problem | | 5208-00-2-R1 | 5 | Unnamed Stream | | 0 | | 0 | 1 | 2 | 0 | | 3 | Wooded and residential hoiusing | | 1 | 0 | 0 | 7 | Problem | | Catchment ID | Outfalls
Included | Receiving Water(s) | Previous
Screening
Results Indicate
Likely Sewer
Input? ¹ | Discharging to
Area of Concern
to Public Health? | Frequency of Past
Discharge
Complaints | Receiving
Water Quality ³ | Density of
Generating Sites
4 | Age of Development/ Infrastructure ⁵ | Historic
Combined
Sewers or
Septic? ⁶ | Aging
Septic? ⁷ | Culverted
Streams? ⁸ | Additional Characteristics | Sewer Repair
Nearby? | Urbanized Area | DCIA >11% | Impaired Waterbody | | Priority Ranking
0-5: Low Priority | |--------------|----------------------|--|--|--|--|---|---|---|---|---------------------------------|------------------------------------|---|------------------------------|------------------|-----------------------------------|--------------------|-------|---------------------------------------| | Infor | mation Source | | Catchment inspections and sample results | GIS Maps | Municipal Staff | Impaired
Waters List | Land Use/GIS
Maps, Aerial
Photography | Land Use
Information, Visual
Observation | Municipal Staff,
GIS Maps | Land Use,
Municipal
Staff | GIS and Storm
System Maps | Other | Municipal Staff, GIS
Maps | CLEAR | Nathan L Jacobson &
Associates | CLEAR | Score | 6-9: Problem
≥: 10 high Priority | | Sco | ring Criteria | | Yes = 3 (Problem
Catchment)
No = 0 | Yes = 3
No = 0 | Frequent = 3 Occasional = 2 | Poor = 3
Fair = 2 | High = 3
Medium = 2 | High = 3
Medium = 2 | Yes = 3
No = 0 | Yes = 3
No = 0 | Yes = 3
No = 0 | Description | Yes=2
No=0 | Yes =1
No = 0 | Yes =1
No = 0 | Yes =1
No = 0 | | | | | | | 140 - 0 | 140 - 0 | None = 0 | Good = 0 | Low = 1 | Low = 1 | 140 - 0 | 110 - 0 | 140 - 0 | | 140-0 | 140 - 0 | No = 0 | NO = 0 | | | | 5208-00-3-L2 | 11 | Mackenzie
Reservoir,Unnamed
Stream | | 0 | | 0 | 2 | 2 | 0 | | 0 | Agricultural land, some wooded and residential houisng | | 1 | 0 | 0 | 5 | Low Priority | | 5208-00-3-L3 | 11 | Muddy River | | 0 | | 2 | 1 | 2 | 0 | | 3 | Wooded, light residential housing and cleared land | | 1 | 0 | 1 | 10 | High Priority | | 5208-00-3-R1 | 0 | Muddy River | | 0 | | 2 | 1 | 2 | 0 | | 3 | Wooded, light residential housing | | 0 | 0 | 1 | 9 | Problem | | 5208-00-3-R2 | 3 | Muddy River | | 0 | | 2 | 2 | 2 | 0 | | 3 | Wooded and agricultural land, some residential housing | | 0 | 0 | 1 | 10 | High Priority | | 5208-00-3-R3 | 3 | Muddy River | | 0 | | 2 | 1 | 2 | 0 | | 3 | Wooded and some residential houisng | | 1 | 0 | 1 | 10 | High Priority | | 5208-00-3-R4 | 0 | Muddy River | | 0 | | 2 | 1 | 1 | 0 | | 0 | Wooded | | 1 | 0 | 1 | 6 | Problem | | 5208-00-3-R5 | 0 | Muddy River | | 0 | | 2 | 1 | 1 | 0 | | 0 | Wooded and cleared land | | 1 | 0 | 1 | 6 | Problem | | 5208-01-1 | 8 | Unnamed Stream | | 0 | | 0 | 2 | 2 | 0 | | 3 | Commercial and wooded,
some residential housing,
highway | | 1 | 0 | 0 | 8 | Problem | | 5208-02-1 | 4 | Spring Brook | | 0 | | 0 | 1 | 2 | 0 | | 0 | Wooded, some
commercial, light
residential housing and
agricultural land | | 0 | 0 | 0 | 3 | Low Priority | | 5208-02-1-L1 | 1 | Ulbrich Reservoir,
Spring Brook | | 0 | | 0 | 1 | 2 | 0 | | 3 | Reservoir, some wooded
and agricultural land, light
residential housing | | 0 | 0 | 0 | 6 | Problem | | 5208-02-2-R1 | 10 | Spring Brook | | 0 | | 0 | 2 | 2 | 0 | | 3 | Residential housing and wooded | | 1 | 0 | 0 | 8 | Problem | | 5208-03-1 | 11 | Unnamed Stream | | 0 | | 0 | 1 | 2 | 0 | | 3 | Wooded and residential housing, light commercial | | 1 | 0 | 0 | 7 | Problem | | 5208-04-1 | 9 | Unnamed Stream | | 0 | | 0 | 1 | 1 | 0 | | 3 | Pond | | 0 | 0 | 0 | 5 | Low Priority | | 5208-04-1-L1 | 0 | Scards Pond | | 0 | | 0 | 1 | 2 | 0 | | 0 | Wooded, agricultural land,
light residential housing | | 0 | 0 | 0 | 3 | Low Priority | | 5208-05-1 | 0 | Mackenzie Reservoir | | 0 | | 0 | 1 | 1 | 0 | | 0 | Wooded, reservoir | | 0 | 1 | 0 | 3 | Low Priority | | 5208-05-1-L1 | 25 | Unnamed Streams | | 0 | | 0 | 1 | 2 | 0 | | 0 | Wooded, some residential
housing and agricultural
land, highway | | 1 | 0 | 0 | 4 | Low Priority | | Catchment ID | Outfalls
Included | Receiving Water(s) | Previous
Screening
Results Indicate
Likely Sewer
Input? ¹ | Discharging to
Area of Concern
to Public Health? | Discharge | Receiving | Density of
Generating Sites
4 | Age of
Development/
Infrastructure ⁵ | Historic
Combined
Sewers or
Septic? ⁶ | Aging
Septic? ⁷ | Culverted
Streams? ⁸ | Additional Characteristics | Sewer Repair
Nearby? | Urbanized Area | DCIA >11% | Impaired Waterbody | dy | Priority Ranking
0-5: Low Priority | |------------------|----------------------
--|--|--|--|---|--|---|---|-------------------------------|------------------------------------|---|-------------------------|-----------------------------------|------------------|--------------------|-------------------------------------|---------------------------------------| | Infor | 2 | Catchment inspections and sample results | GIS Maps | Municipal Staff | Impaired
Waters List | Land Use/GIS
Maps, Aerial
Photography | Land Use
Information, Visual
Observation | Municipal Staff,
GIS Maps | Land Use,
Municipal
Staff | GIS and Storm
System Maps | Other | Municipal Staff, GIS
Maps | CLEAR | Nathan L Jacobson &
Associates | CLEAR | Score | 6-9: Problem
≥: 10 high Priority | | | Scoring Criteria | | | Yes = 3 (Problem
Catchment)
No = 0 | Yes = 3
No = 0 | Frequent = 3 Occasional = 2 None = 0 | Poor = 3 Fair = 2 Good = 0 | High = 3 Medium = 2 Low = 1 | High = 3 Medium = 2 Low = 1 | Yes = 3
No = 0 | Yes = 3
No = 0 | Yes = 3
No = 0 | Description | Yes=2
No=0 | Yes =1
No = 0 | Yes =1
No = 0 | Yes =1
No = 0 | | | | 5208-06-1 | 25 | Unnamed Stream | | 0 | THE C | 0 | 2 | 2 | 0 | | 3 | Agricultural land, some residential, highway | | 1 | 0 | 0 | 8 | Problem | | 5208-07-1 | 0 | Unnamed Stream | | 0 | | 0 | 1 | 1 | 0 | | 3 | Wooded | | 0 | 0 | 0 | 5 | Low Priority | | 5208-08-1 | 23 | Pine River, Unnamed
Streams | | 0 | | 0 | 2 | 2 | 0 | | 3 | Wooded with residential housing, light cleared land | | 1 | 0 | 0 | 8 | Problem | | 5208-09-1 | 0 | None | | 0 | | 0 | 1 | 1 | 0 | | 0 | Wooded | | 1 | 0 | 0 | 3 | Low Priority | | 5302-02-1 | 0 | Unnamed Stream | | 0 | | 0 | 2 | 2 | 0 | | 3 | Residential housing, some wooded areas and marsh, golf course | | 1 | 0 | 0 | 8 | Problem | | 5302-04-1-L1 | 16 | Butterwoth Brook | | 3 | | 0 | 2 | 2 | 0 | | 3 | Wooded with residential housing | | 1 | 0 | 0 | 11 | High Priority | #### Scoring Criteria: - Olfactory or visual evidence of sewage, - Ammonia ≥ 0.5 mg/L, surfactants ≥ 0.25 mg/L, and bacteria levels greater than the water quality criteria applicable to the receiving water, or - Ammonia ≥ 0.5 mg/L, surfactants ≥ 0.25 mg/L, and detectable levels of chlorine - ³ Receiving water quality based on latest version of State of Connecticut Integrated Water Quality Report. - Poor = Waters with approved TMDLs (Category 4a Waters) where illicit discharges have the potential to contain the pollutant identified as the cause of the impairment - Fair = Water quality limited waterbodies that receive a discharge from the MS4 (Category 5 Waters) - Good = No water quality impairments - ⁴ Generating sites are institutional, municipal, commercial, or industrial sites with a potential to contribute to illicit discharges (e.g., car dealers, car washes, gas stations, garden centers, industrial manufacturing, etc.) - ⁵ Age of development and infrastructure: - High = Industrial areas greater than 40 years old and areas where the sanitary sewer system is more than 40 years old - Medium = Developments 20-40 years old - Low = Developments less than 20 years old - ⁶ Areas once served by combined sewers and but have been separated, or areas once served by septic systems but have been converted to sanitary sewers. - ⁷ Aging septic systems are septic systems 30 years or older in residential areas. - $^{\rm 8}$ Any river or stream that is culverted for distance greater than a simple roadway crossing. - ⁹ Based off of CT NEMO DCIA Calculations Pending investigation ¹ Previous screening results indicate likely sewer input if any of the following are true: ² Catchments that discharge to or in the vicinity of any of the following areas: public beaches, recreational areas, drinking water supplies, or shellfish beds